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A B S T R A C T

In this article the family of polynomial estimators for the estimation of the linear system response of weakly
non-linear systems is examined regarding estimation errors and applicability. The Hp3 estimator is introduced
as an extension for measurement setups having both input and output noise and it is shown how the results
obtained with the polynomial estimators are related to the parameters of Volterra models. The bias-variance
tradeoff of the estimation error is derived and methods for obtaining the minimum error are presented.

1. Introduction

Weakly non-linear systems are systems which are intended to be
linear but suffer from unwanted non-linear distortions which are
present in most real, non-ideal physical systems. The estimation of
the frequency response function (FRF) of such systems can either be
done by purely linear identification approaches which only lead to a
best linear approximation (BLA) [1,2] or by the complete parametric
identification of more or less complex non-linear system models as e.g.
the parallel-cascade model or special cases of it as e.g. in [3–6], or even
the more general Volterra series [7]. The linearization on one hand of
course will suffer from a prediction error for the output signal, whose
magnitude depends on the amount of non-linearity in the system under
test (SUT) and the level of the input signal. The Volterra approaches on
the other hand are very complex, hence their application is limited to
systems with short memory and low orders of non-linearity, as e.g. in
[8–10].

In the preceding article [11], we introduced the polynomial Hp
estimators as an extension of the well-known purely linear estimators
H1 and H2 for the application to weakly non-linear systems. Two
estimators for either output or input noise only, the Hp1 and the Hp2
estimator respectively were derived, based on a semi-parametric
system model to overcome the limitations of linear approaches. We
showed that they are consistent estimators for the true linear proces-
sing of weakly non-linear systems modeled by a Wiener-Hammerstein-
type parallel-cascade model for these special measurement setups.

In the present article, we will consider measurement setups where

input and output noise are present simultaneously. For linear systems
there exist FRF estimators which are consistent in this case, see e.g.
[12,13], called H3 estimator. This method needs the test signal to be
completely deterministic, which is not an issue when generated
digitally, but allows for any linear pre-processing in order to excite
the actual SUT, such as e.g. an amplification in order to drive a
loudspeaker. We will adopt this method and extend the polynomial
estimator family analogously by the new member Hp3 for the estimation
of the linear subsystem of weakly non-linear systems in the present of
input and output noise. This will be done for linear pre-processing and
then be further extended to non-linear pre-processing.

Besides this, we will show that these estimators can also be applied
to systems represented by a finite Volterra series, hence showing
consistency for the estimation of the linear FRF of an even wider class
of weakly non-linear systems. This is done based on a brief analysis of
the frequency domain representation of the Volterra series. The
consistent estimation of the linear kernel is shown to be possible
without the need of identifying the higher order kernels using the
proposed estimator. Consequently, the complexity of our Hp estimator
can be located in between the linearization and the non-linear model
approaches. It will deliver better results than the BLA and is further-
more able to identify a synopsis of the Volterra parameters and in
contrast to the complete identification is applicable to systems with
long memory and high orders of non-linearity.

System identification processes are usually affected by measure-
ment noise, which leads to variance errors and by bias errors that arise
from systematic flaws, such as the wrong choice of the approximation
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order. The Hp estimator will be analyzed regarding its sensitivity to
both types of errors. This will include the dependencies on noise
variance, chosen approximation order as well as the actual system
order. These considerations will then be used to develop methods to
obtain a minimum overall error in practical applications.

This article is structured as follows: Section 2 will give a brief review
of the Hp estimator family. We will then extend the family by a new
member, the Hp3 estimator. Section 3 will show that the Hp estimators
are valid for all weakly non-linear systems for which a converging
Volterra series exists. To further increase the practical applicability of
the Hp estimators, the computation of the estimates will be modified
within Section 4 in order to reduce the arithmetic load of the procedure
by a simplified calculation of the pseudoinverse. In Section 5 we will
analyze the Hp estimator family regarding error sources in detail and
discuss ways to reduce the errors. These considerations will lead us to
the so-called bias-variance tradeoff, which will be the basis for the
development and discussion of methods for determining the in some
sense best approximation order. These methods are presented and
analyzed within simulations in Section 6, before finally Section 7 will
close with a conclusion as well as some remarks on further research.

2. The Hp3 estimator for systems with input and output noise
2.1. Short review of the polynomial Hp estimator

In [11] we developed a consistent frequency-response estimator for
the linear processing of a non-linear SUT, where the derivation was
done in the frequency domain as it is common practice for H1 and
related estimators. For this purpose we modeled the SUT with a
Wiener-Hammerstein-type system shown in Fig. 1. We have shown,
that for a given excitation signal, the system output Yi at any frequency
fi can be expressed by a polynomial of order D with excitation signal Xi
at the same frequency fi as the variable and the so called equivalent
path-filters (EPF) G∼k i, as the coefficients

Y G X G X G X= + + ⋯ + .∼ ∼ ∼
i i i i i D i i

D
1, 2,

2
, (1)

The system described by (1) can be interpreted as a simplified
model with a Hammerstein-type path for each order containing the
EPFs G∼k i, as it is shown in Fig. 6. An EPF summarizes the contributions
of the filters HW i, and HH i, at frequency fi and because of the non-
linearities in the paths it is signal dependent. Thus, this simplification
is coupled with the restriction that the EPFs except that for the linear
path are only valid for the used test signal. We propose pseudo-
random, binary maximum length sequences (MLS) as test signals,
which show constant magnitude response and are preferable test
signals because of their low crest-factor in the time-domain. However
in principle it is possible to use any deterministic signal as a test signal
in conjunction with the proposed estimators, as long as it is sampled

coherently.
In order to identify the EPFs we apply the test signal with NA

different amplitudes. By doing so we gain a system of NA linear
equations following (1) for each frequency fi. This can be represented
by a matrix multiplication

Y X G= ,i i i (2)

where Gi and Yi are column vectors consisting of all D path weights and
the output for all NA measured amplitudes respectively, and Xi is a
N D×A Vandermonde-like matrix consisting of the NA input ampli-
tudes and its D exponents, each at frequency fi. The number of
measurements at different amplitudes is assumed to be higher than
the system order, hence N D>A . This makes Xi a non-squared matrix.
In order to identify the EPFs Gi we therefore use the Moore-Penrose
pseudoinverse of Xi as
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In general, a measurement is disturbed by stochastic noise. In our case,
the system input X and the system output Y are considered to be
disturbed by uncorrelated additive white Gaussian noise Min and Mout
respectively, so that the true input and output signals can only be
estimated as X and Y . For the noise contaminated measurement setup
as shown in Fig. 2, two special cases were analyzed: for output noise
only (M = 0in ) the estimator in (3) was shown to be consistent and
therefore the non-linear extension of the well known H1 estimator,
hence it was called the Hp1 estimator. Analogously for measurement
setups with input noise only (M = 0out ) the non-linear extension of the
consistent H2 estimator
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was introduced as the Hp2 estimator and its consistency was shown.

2.2. The Hp3 estimator
Both polynomial estimators introduced by now are only consistent

for special cases of measurement noise. This is output noise only in the
case of the Hp1 estimator and input noise only in the case of the Hp2
estimator. A single noise source or more realistically, a single noise
source that dominates is often a valid assumption, as e.g. the input
noise can be neglected compared to the input signal. However, for
some measurement setups none of these assumptions can be made and
both types of noise sources need to be considered. In the following, we
will discuss several non-linear system measurement setups with in-
and output noise and develop special, consistent polynomial estimators
for these cases.

Fig. 1. Block-diagram of the Wiener-Hammerstein-type model.
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