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A B S T R A C T

In this article a method for the measurement of the linear frequency response of weakly non-linear systems is
described. A frequency domain estimator is developed by analyzing the output spectra for single- and multitone
excitations of several types of system models with the most complex system one being a parallel-cascade
Wiener-Hammerstein-type model which is able to represent a wide range of weakly non-linear systems. It is
then shown that the output spectrum of such a weakly non-linear system can be expressed by a polynomial with
constant coefficients for a given input signal at each frequency. This leads to the proposed polynomial estimator
Hp that is capable of identifying the true linear, nonparametric frequency response of the system under test.
Special versions for either input or output noise only are developed and consistency is shown for all considered
system models.

1. Introduction

Signal processing systems, whether analog or digital, are generally
not perfectly linear, but usually include some kind of unwanted non-
linear signal processing. This can be due to the physical behavior of
circuit elements in analog systems or due to quantization in digital
systems. We will refer to the class of systems that are intended to be
linear but have some, in general not limited, amount of non-linear
processing due to nonidealities as weakly non-linear systems.

In many cases the true linear processing rather than a linearization
of the weakly non-linear system is of interest. For example, for audio
systems the question, of which nature the non-linear processing
artifacts are and if they are audible, is essential and longstanding in
the field of audio quality assessment. It becomes possible to evaluate
the effects of the non-linear processing on the output signal of a system
under test SUT, if the components generated by the linear and non-
linear processing in the output signal can be separated. This can be
achieved by identification of the linear processing in the SUT, which is
defined by the frequency response function (FRF) Hlin. With the
knowledge of this function, we have a linear substitute system with
which the linearly processed output and the non-linear distortions can
be separated and analyzed individually. Consequently, the challenge is
to identify this linear subsystem. A vast range of approaches for the

task of the identification of linear system behavior have been proposed
involving different system models for the SUT and different types of
test signals.

There are various approaches to modeling and identification of
weakly non-linear systems [1]. The most general approach to model
such systems with finite memory is the use of Volterra series [2]. They
have been discussed and applied in various publications, see e.g. [3–7].
In practice the estimation of the Volterra system parameters is limited
to systems with short memories and low orders of non-linearity
because the complexity of the model parameter identification grows
significantly with increasing order. Additionally, the interpretation of
the obtained parameters, especially in the time domain is not very
intuitive.

Due to the relatively high complexity of a Volterra system, which is
in many cases not needed for a certain application, simpler system
models are used widely. The two basic models are the Hammerstein
model, where a static non-linearity is followed by a linear time-
invariant system, and the Wiener model, where the arrangement of
the linear and the non-linear block is reversed. The static non-linearity
is usually described by a characteristic curve, which can be approxi-
mated by a polynomial. Numerous publications [8–11] make use of one
of these models to consider non-linear effects as a step of improvement
over a purely linear system model.
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A wider range of system behavior can be described using a
combination of these two simple models which leads to the Wiener-
Hammerstein model. This system model consists of three blocks in
series, a linear system followed by a static non-linearity followed by a
second linear system. Research and applications of this model can be
found in control theory, see e.g. [12–16]. By combining multiple
parallel paths, each consisting of a Wiener-Hammerstein system, an
even more general parallel-cascade model [17] is established. Most of
the work in these models aims at determining a linear approximation
for a given operating point, the so called best linear approximation
(BLA) [18]. In [19] a least-squares estimation in the time-domain is
used with multi-amplitude sweeps as test signals to obtain the linear
response of a parallel-cascade model.

In this paper, we derive the proposed FRF estimator for each of the
system models, from the Hammerstein model up to a special case of the
parallel-cascade model, where we consider a monomial (instead of a
complete polynomial) in each path with unique exponents in the range

D1… to model a system of the given order D. We will refer to this model
as a Wiener-Hammerstein-type model. In this model, each path has its
own set of filters before and after the static non-linearity and
additionally weighting factors gk are introduced in each path. This
model therefore allows to incorporate frequency dependent non-linear
distortions through the path-filters. We consider these filters to be
(non-parametric) FIR-filters with a length that is directly related to the
analysis (test signal) length. The non-linearity is in contrast modeled
parametrically, with the parameters being the gk weights in each path.
Hence our complete model is of semi-parametric nature. The model is
non-recursive, but it is also appropriate to model recursive systems if
we choose the length of the filters high enough.

Besides the system model, the choice of appropriate test signals and
procedures is very important for the efficiency and the accuracy of the
measurement and the system identification. Suitable test signals could
be single tones, linear or exponential sweeps [20], multitones [21,22],
gaussian white noise or pseudorandom signals like maximum length
sequences (MLS) [23,24]. Two requirements on an efficient test signal
are a low crestfactor to achieve a good signal to noise ratio (SNR) and
periodicity to avoid the use of windowing. With narrowband signals
like sines or sweeps, it is relatively simple to separate linear and non-
linear processed components in the output signal of the SUT as e.g. in
[25]. If the test signals are broad-band signals like multitones, the
measurement can deliver information at multiple frequencies simulta-
neously and thus measurement speed can be increased compared to
multiple single-tone measurements.

In the scope of this paper, we will use MLS because of their low
crest-factor, their periodicity and therefore coherent sampling and
their constant magnitude spectrum. MLS can be interpreted as full-
band multitones with a minimum crest-factor in the time domain. Test
signals with lower crest-factors can also be used with the proposed
estimator, resulting in a lower SNR, hence more averaging is needed
for the same quality of estimation. An iterative measurement using sets
of maximum length and other pseudorandom binary sequences of
equal length but with different phases has been applied in [26,27]. This
method is able to reduce artifacts caused by non-linear distortion by
phase randomization and averaging.

However, single-amplitude MLS measurements like these and also
e.g. [13,15] can only determine the best linear approximation for a
single excitation level of the system under test. One could visualize this
as a linearization between two points on a characteristic curve where
the measured gain is then the slope of the line defined by the two
points. This gain is called equivalent gain, because it does not equal the
gain of the linear part of the SUT, but is influenced by all odd-order
distortions which add an amplitude dependent contribution to the true
linear gain. Because the excitation of the system with a single-
amplitude MLS can not reveal the true linear gain of the SUT, the
measurement technique is extended by the use of a multi-amplitude

test signal and hence an MLS is applied with multiple different
amplitudes to identify the real (amplitude-independent) linear part of
the SUT. With the proposed method this can be done without the need
of identifying the non-linear processing of the system.

The paper is structured as follows. In the second section we will
analyze the output spectra for each of the considered system models,
starting from a system with a single non-linear block and no memory.
These output spectra will be computed for single tone excitations and
we will analyze how the non-linear distortion products influence the
output of the linear subsystem at the excitation frequency. In the third
section we will continue with the derivation of the output of the most
general model when the system is excited by multitones, to show that
the proposed Hp estimator can be applied with broadband test signals.
This analysis gives a very detailed insight into the output of weakly
non-linear systems, combining several analysis approaches in order to
get an in-depth understanding of the spectral effects of non-linear
signal processing. Section four finally introduces two variants of the
proposed estimator that can be used to identify the linear part of the
Wiener-Hammerstein-type system. Section five concludes the paper.
Extensions, error analysis as well as practical considerations of the
derived estimator will be given in a follow-up article [28].

2. Model of the system under test using single tone
excitations

In the scope of this paper, we will consider all systems to have a
smooth non-linearity which can be described by a differentiable
(potentially frequency dependent) characteristic curve. Hence we will
assume that all considered SUTs can be modeled by a parallel-cascade
model with monomials as the non-linearity in each path. Thereby the
highest monomial, which is equivalent to the system order D, can be
arbitrary high but has to be finite or at least the SUT has to be
approximable within the required accuracy by a truncated series of
order D. In order to develop a consistent estimator we assume the
system order D to be known a priori and the determination of D is not
topic of this article.

We will now derive the formulas for computing the output of the
Wiener-Hammerstein-type system models. The description will start
with memoryless systems to motivate the concept of the amplitude
response curve, evolve to Wiener and Hammerstein systems and finally
the output spectrum of Wiener-Hammerstein-type parallel-cascade
systems will be examined.

2.1. Memoryless static non-linearity

Nonlinear electric systems are commonly specified by their char-
acteristic curve which determines their input-output dependency. This
curve can be described, at least within a specified input region, by a
simple polynomial of order D as

∑y n g x n( ) = ( )
k

D

k
k

=1 (1)

with the time-discrete, instantaneous values of the output y(n), the
input x(n) and the weights gk for each order k.

This kind of characteristic curves is well known from data sheets
and they can be easily interpreted concerning constant (DC) input and
output quantities. The output quantity is determined directly by the
polynomial in (1). For alternating quantities the time dependency
needs to be considered which complicates the interpretation for
sinusoidal signals, where we are not interested in the instantaneous
values but rather in the input- and output amplitudes. Since we are
looking at the frequency domain representation of a system, we will
explore the influence of such weak non-linearities on sinusoidal input
signals by means of the input and output spectral amplitudes.
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