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a b s t r a c t 

In this paper, we develop low complexity and stable bootstrap procedures for FastICA estimators. Our 

bootstrapping techniques allow for performing cost efficient and reliable bootstrap-based statistical infer- 

ence in the ICA model. Performing statistical inference is needed to quantitatively assess the quality of 

the estimators and testing hypotheses on mixing coefficients in the ICA model. The developed bootstrap 

procedures stem from the fast and robust bootstrap (FRB) method [1], which is applicable for estima- 

tors that may be found as solutions to fixed-point (FP) equations. We first establish analytical results on 

the structure of the weighted covariance matrix involved in the FRB formulation. Then, we exploit our 

analytical results to compute the FRB replicas at drastically reduced cost. The developed enhanced FRB 

method (EFRB) for FastICA permits using bootstrap-based statistical inference in a variety of applications 

(e.g., EEG, fMRI) in which ICA is commonly applied. Such an approach has not been possible earlier due 

to incurred substantial computational efforts of the conventional bootstrap. Our simulation studies com- 

pare the complexity and numerical stability of the proposed methods with the conventional bootstrap 

method. We also provide an example of utilizing the developed bootstrapping techniques in identifying 

equipotential lines of the brain dipoles from electroencephalogram (EEG) recordings. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Independent component analysis (ICA) [2,3] is a widely used 

multivariate analysis technique for extracting unobserved inde- 

pendent source signals from their observed multivariate mixture 

recordings. During the past two decades, a myriad of methods for 

separating source signals have been developed [2] , whereas less at- 

tention has been paid to developing statistical inference framework 

(standard errors of the estimators, hypothesis testing) for ICA. 

In many problems where ICA is commonly applied, statistical 

inference is needed for either assessing the stability of the esti- 

mated independent components [4,5] or validating prior hypoth- 

esis posed by practitioners [6] . For example, in many sensing ap- 

plications, propagation of a source signal-of-interest may be local 

and limited only to a few number of sensors in the vicinity of the 

source. Magnetoencephalography (MEG) is a good example of such 

a sensing modality. Therefore, tests for hypotheses on the coef- 

ficients of the mixing matrix are needed to identify contribution 

of a specific source signal-of-interest onto a specific mixture vari- 

able (sensor). This in turn reveals sparsity of the ICA mixing matrix 

which can be exploited as a prior information to improve upon the 

estimation accuracy and/or reducing the dimensionality. 
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Bayesian inferential methods [7–9] and inference based on 

asymptotic statistics [10,11] are proposed for performing statisti- 

cal inference in the ICA model. Bayesian approaches require knowl- 

edge of prior distributions of the model parameters. As pointed out 

in [ 7 , Section 5], performance of such probabilistic methods vastly 

depends on the validity of the assumed prior distributions. In ad- 

dition, the number of Bayesian model components grow exponen- 

tially as a function of the latent space dimensionality [ 7 , Section 5]. 

Also statistical tests that are based on asymptotic distribution of 

the mixing matrix estimator as in [10,11] perform poorly when the 

sample size is not several orders of magnitude larger than the di- 

mension. Moreover, for real-world data, the ICA model (e.g., linear 

mixing) can be at best only approximately true, and thus validity 

of tests based on asymptotic normality of estimators can be ques- 

tioned. 

The main objective of this paper is on developing a stable and 

practical bootstrap procedure which can be used to perform statis- 

tical inference on the FastICA estimates of mixing matrix [2,12] in 

the linear ICA model. Such statistical inferences are used to iden- 

tify which sources contribute to a specific observed mixture signal. 

Bootstrap is an increasingly important statistical inference tool, 

widely used in testing hypotheses, characterizing empirical distri- 

butions of the parameters and assessing the quality of estimators 

in terms of standard error, variance, confidence intervals, etc. [13–

15] . Constructing bootstrap distributions by conventional bootstrap 

(CB) method [13] requires the calculation of the mixing matrix es- 
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timator ˆ A for several thousands bootstrap samples which may be 

computationally infeasible in many applications. 

Techniques developed in this paper stem from the fast and ro- 

bust bootstrap (FRB) method [1,16,17] which is applicable for es- 

timators that may be found as solutions to fixed-point (FP) esti- 

mation equations. We establish analytical results for the weighted 

covariance matrix involved in the FRB formulation. This allows us 

to compute the FRB replicas of the demixing matrix at drastically 

reduced cost. Such an Enhanced FRB for FastICA is referred to as 

EFRB in the sequel. The proposed EFRB procedure provides further 

substantial reductions in computation times of bootstrap-based es- 

timates and quantitative performance measures such as computing 

standard errors of the estimates or testing hypotheses. 

The non-convergence runs of the FastICA algorithms occur more 

frequently as κ = d/n grows, where n and d denote the number of 

distinct observations and latent space dimensionality respectively 

i.e., see Table I in [18] and Table III-VI in [19] . Such a convergence 

problem increasingly arises when FastICA algorithms are run on 

bootstrap samples. This is due to the fact that, in the process of 

sampling with replacement from the observed data set only about 

63% of the original data points appear in a bootstrap sample [14] . 

This reduced number of distinct data points in bootstrap samples 

leads to more frequent convergence problems with the fastICA al- 

gorithm. 

One of the key advantages of the EFRB procedures developed 

in this paper is that they do not require the computation of the 

FastICA estimator of the mixing matrix for each bootstrap sample. 

As a consequence, the EFRB procedure is fast to compute and it 

avoids the above mentioned convergence problems. 

As a practical example, we develop bootstrap tests for hypoth- 

esis H 0 : a i j = 0 vs H 1 : a i j � = 0 , where a ij denotes the ( i, j )th el- 

ement of the unknown mixing matrix parameter A of the ICA 

model. The motivation is to identify which sources contribute to 

the observed mixtures in the ICA model. This is of high interest 

when the mixing modality may be local as in many biomedical 

measurements such as MEG. Utility of such inference procedure is 

illustrated in the context of analysing electroencephalogram (EEG) 

recordings. 

The paper is organized as follows. In Section 2 , the ICA model 

and the FastICA estimators are briefly reviewed. In Section 3 , two 

approaches to bootstrapping the ICA model are described. The new 

bootstrap method, EFRB, is proposed in Section 4 . In Section 5 nu- 

merical examples are provided and performance evaluations are 

performed. An example of utilizing the new bootstrap method in 

analysing EEG signals is provided in Section 6 . Section 7 concludes. 

2. ICA model and the FastICA estimator 

Recall that in the linear ICA model the random vector, y ∈ 

R 

p is a linear mixture of unobserved random source vector 

s = (s 1 , . . . , s d ) 
� possessing statistically independent components 

(IC’s), i.e., 

y = As = a 1 s 1 + · · · + a d s d , (1) 

where A = 

(
a 1 · · · a d 

)
is the unknown p × d mixing matrix whose 

element a i j = [ A ] i j represents the contribution of the j th source s j 
onto the i th mixture variable y i , where i ∈ { 1 , . . . , p} , j ∈ { 1 , . . . , d} 
and p ≥ d . A common preprocessing step in ICA is whitening trans- 

form that decorrelates the observed data and performs dimension- 

ality reduction. Let D denote the whitening matrix , D = L −1 / 2 E 

� , 
where L = diag (l 1 , . . . , l d ) consists of the d non-zero eigenvalues of 

the covariance matrix , C (y ) = E [ yy � ] , and E is the p × d matrix of 

respective eigenvectors as its column vectors, so C (y ) = ELE 

� . The 

whitened data x = Dy satisfies s = Wx for an orthogonal full rank 

d × d demixing matrix W . In other words, the whitened data x fol- 

lows the ICA model 

x = W 

� s = w 1 s 1 + · · · + w d s d , (2) 

where the unknown d × d mixing matrix W 

� = DA is orthogonal. 

Thus the problem of source extraction is considerably simpler for 

whitened data. 

From this point onwards we assume that the data is pre- 

whitened and centered, i.e. has zero mean, which also implies 

that E [ s ] = 0 . We seek for an orthogonal demixing matrix W = (
w 1 · · · w d 

)� 
, whose (transposed) row vector w j is called the j th 

demixing vector . In ICA, the demixing matrix can be estimated up 

to sign, scale and permutation ambiguities of the demixing vectors. 

Let us now present the necessary definitions for the FastICA es- 

timator. We define the inner product in the vector space R 

d w.r.t. to 

C = C (x ) = E [ xx � ] as 〈 w , v 〉 C = w 

� C v . Let ‖ w ‖ C = w 

� C w denote 

the induced norm. When C = I , we often write ‖ x ‖ for brevity, 

i.e., ‖ · ‖ without subscript C should be read as regular Euclidean 

norm. It should be noted that for whitened data, C = I . However, 

we keep the covariance matrix in our derivations, since later on 

the bootstrap samples are formed from whitened data samples for 

which the (sample) covariance matrix is no longer an identity ma- 

trix. The 1-unit FastICA estimator finds a FastICA demixing vector w 

as a local maxima of a non-Gaussianity measure 
∣∣E 

[
G (w 

� x ) 
]∣∣ un- 

der the unit-norm constraint ‖ w ‖ 2 C = w 

� C w = 1 , where G can be 

any twice continuously differentiable nonlinear and non-quadratic 

function with G (0) = 0 ; see [20, Chapter 8] . Thus the 1-unit FastICA 

estimator maximizes the Lagrangian 

L 1 U (w ;λ) = 

∣∣E 

[
G (w 

� x ) 
]∣∣ − λ

2 

(w 

� C w − 1) , (3) 

where λ is the Lagrange multiplier. We write g = G 

′ and g ′ = G 

′′ for 

the 1st and 2nd derivative of G respectively, where g is referred to 

as ICA nonlinearity . 

When more than one sources need to be extracted, there ex- 

ists two approaches: In deflation-based FastICA the demixing vec- 

tors w k, g , ( k = 1 , . . . , d), are estimated one-by-one by iterating the 

following steps until convergence: 

1. w k,g ← C −1 
E [ g(w 

� 
k,g 

x ) x ] − E [ g ′ (w 

� 
k,g 

x )] w k,g 

2. w k,g ← �⊥ 
k −1 

w k,g 

3. w k,g ← w k,g / ‖ w k,g ‖ C 
where 

�⊥ 
k −1 = I −

k −1 ∑ 

i =1 

w i,g w 

� 
i,g C = I −

k −1 ∑ 

i =1 

〈 w i,g , ·〉 C w i,g , 

is an orthogonal projection operator that projects onto the or- 

thogonal complement of the subspace (of the inner product 

space) spanned by the previously found FastICA demixing vectors 

w 1 ,g , . . . , w k −1 ,g . 

In symmetric FastICA approach demixing vectors are estimated 

simultaneously with a symmetric orthogonality constraint on 

demixing vectors ( W 

� C W = I ). The symmetric FastICA algorithm 

computes the demixing matrix W g = (w 1 ,g · · · w d,g ) 
� by iterating 

the following steps: 

1. w k,g ← C −1 
E [ g(w 

� 
k,g 

x ) x ] − E [ g ′ (w 

� 
k,g 

x )] w k,g for k = 1 , . . . , d

2. W g ← 

(
W g C W 

� 
g 

)−1 / 2 
W g 

until further iterations do not update the previous results. 

Finally, after the orthogonal d × d demixing matrix W g = (
w 1 ,g · · · w 1 ,g 

)� 
for whitened data x = Dy has been found, the Fas- 

tICA estimate A g of the mixing matrix A of original (non-whitened) 

data y is computed as 

A g = D 

−W 

� 
g , (4) 
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