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a b s t r a c t 

The multiple signal classification (MUSIC) method is known to be asymptotically efficient, yet with a 

small number of snapshots its performance degrades due to bias in MUSIC localization function. In this 

communication, starting from G-MUSIC which improves over MUSIC in low sample support, a high signal 

to noise ratio approximation of the G-MUSIC localization function is derived. This approximation results 

in closed-form expressions of the weights applied to each eigenvector of the sample covariance matrix. 

A new method which consists in minimizing this simplified G-MUSIC localization function is thus in- 

troduced, and referred to as sG-MUSIC. Interestingly enough, this sG-MUSIC criterion can be interpreted 

as a bias correction of the conventional MUSIC localization function. Numerical simulations indicate that 

sG-MUSIC incur only a marginal loss in terms of mean square error of the direction of arrival estimates, 

as compared to G-MUSIC, and performs better than MUSIC. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction and problem statement 

Estimating the directions of arrival (DoA) of multiple sources 

impinging on an array of M sensors is a primordial task in most 

sonar or radar systems [1] . A reference approach to tackle this 

problem is by the maximum likelihood estimator (MLE) [2–5] , 

whose performance is at best matched asymptotically, but is usu- 

ally most accurate in the so-called threshold area where most es- 

timators begin to depart from the Cramér-Rao bound (CRB). The 

MLE entails a global search for the maximum of a K -dimensional 

likelihood function, where K stands for the number of sources 

and can thus be prohibitive from a computational point of view. 

In the eighties, the paradigm of subspace-based methods was in- 

troduced, relying heavily on the low-rank structure of the noise- 

free covariance matrix. Exploiting the partitioning of the space as 

a subspace containing the signals of interest and its orthogonal 

complement, the K -dimensional problem was reduced to a one- 

dimensional problem where either K maxima, K eigenvalues or K 

roots of a polynomial were to be searched, see e.g. MUSIC [6,7] , 

ESPRIT [8] or MODE [9] respectively. 

MUSIC [6,7] , which is one of the first subspace-based technique 

introduced and is applicable to any array geometry, has been ex- 

tensively studied. The MUSIC DoA estimates are obtained as the 

K deepest minima of the localization function 

ˆ L MUSIC (θ ) defined 
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hereafter. In the large sample case, it was demonstrated that it is 

asymptotically unbiased and efficient [10–12] , i.e. it achieves the 

CRB either as the number of snapshots T or the signal to noise 

ratio (SNR) grow large. Nonetheless, its performance in finite sam- 

ple degrades. This is detrimental in practical situations where dy- 

namically changing environments require carrying out DoA estima- 

tion with a possibly small number of snapshots. In [13] , Kaveh and 

Barabell provided a detailed study of MUSIC localization function 

ˆ L MUSIC (θ ) = a H (θ ) ˆ U n ̂  U 

H 
n a (θ ) 

where a ( θ ) stands for the array steering vector and 

ˆ U n = [
ˆ u 1 · · · ˆ u M−K 

]
where ˆ u m 

are the eigenvectors of the sam- 

ple covariance matrix with the convention that the correspond- 

ing eigenvalues ˆ λm 

are sorted in ascending order. They proved 

that, when evaluated at a true DoA θ k , ˆ L MUSIC (θ ) has a finite 

sample bias, which is generally larger than the corresponding 

standard deviation, and is thus the main factor for the loss of 

resolution and accuracy. In [14] , rigorous expressions for the fi- 

nite sample bias of MUSIC DoA estimates were derived. In fact, 

resorting to random matrix theory (RMT), i.e. considering the 

asymptotic regime where M, T → ∞ with M / T → c (denoted 

as RMT-regime), it was proven in [15] that the localization func- 

tion of MUSIC is not consistent. As a corollary, it was demon- 

strated that MUSIC cannot consistently resolve sources within the 

main beam width. In order to cope with this problem, the G- 

MUSIC method was introduced which provides a consistent esti- 

mate of a H (θ ) U n U 

H 
n a (θ ) in the RMT sense. G-MUSIC estimates 

the noise projection matrix as ˆ P G-MUSIC = 

∑ M 

m =1 w m ̂

 u m ̂

 u 

H 
m 

where 

w m 

are weights defined hereafter. The difference with the MUSIC 
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projector ˆ P MUSIC = 

∑ M−K 
m =1 ˆ u m ̂

 u 

H 
m 

is twofold: MUSIC uses only 

“noise” eigenvectors while ˆ P G-MUSIC makes use of all eigenvectors, 

and MUSIC does not attribute a different weighting to the eigen- 

vectors. G-MUSIC was shown to improve over MUSIC and, although 

it relies on an asymptotic assumption, G-MUSIC proved to be effec- 

tive in small sample support [15,16] . 

This said, the weights of G-MUSIC are not easy to obtain: com- 

puting them requires finding the roots of a M th degree polynomial 

or finding the eigenvalues of a M × M matrix, see below for details. 

Additionally, it is difficult to have a simple and intuitive interpre- 

tation of these weights. In this communication, we start from G- 

MUSIC which performs well for small T , and try to simplify calcu- 

lation of its weights and to obtain more insightful expressions. Our 

approach is based on a high SNR approximation of the G-MUSIC 

weights and results in a simple, closed-form expression. Interest- 

ingly enough, the so-approximated weights can be interpreted as 

a correction of the bias in MUSIC localization function. The new 

scheme is thus simpler than G-MUSIC without sacrificing accuracy, 

as will be shown in the numerical simulations. 

2. Derivation of sG-MUSIC 

In this section, we derive an approximated and simplified ex- 

pression of G-MUSIC projection estimate 

ˆ P G-MUSIC = 

M ∑ 

m =1 

w m ̂

 u m ̂

 u 

H 
m 

(1) 

and relate the so-obtained estimate to a bias compensation of MU- 

SIC. 

2.1. Background and approach 

The weights w m 

of G-MUSIC are given by [15] 

w m 

= 

⎧ ⎨ 

⎩ 

1 + 

∑ 

k>M−K 

(
ˆ λk 

ˆ λm −ˆ λk 

− ˆ μk 

ˆ λm − ˆ μk 

)
m ≤ M − K 

−∑ 

k ≤M−K 

(
ˆ λk 

ˆ λm −ˆ λk 

− ˆ μk 

ˆ λm − ˆ μk 

)
m > M − K 

(2) 

where ˆ λk are the eigenvalues of the sample covariance matrix and 

ˆ μk , k = 1 , . . . , M denote the roots of 

f (μ) = 

M ∑ 

m =1 

ˆ λm 

ˆ λm 

− μ
= 

M 

c 
= T (3) 

sorted in ascending order. Note that, when c < 1, we have the 

interlacing property that ˆ λm −1 < ˆ μm 

< ̂

 λm 

[17] . It follows that, at 

high signal to noise ratio where there is a clear separation be- 

tween signal and noise eigenvalues, the last K values ˆ μm 

will be 

well above the cluster of the M − K smallest ˆ μm 

, which should lie 

around the white noise power (WNP), and the latter is assumed 

to be small. Moreover, observe from (2) that the M − K smallest 

ˆ μm 

will impact the weights of the signal eigenvectors while the 

weights of the noise eigenvectors depend on the K largest ˆ μm 

only. 

Our approximation relies on finding the roots of (3) by con- 

sidering the two clusters of solutions independently. Rewriting the 

function in (3) as f (μ) = 

∑ M 

m =1 f m 

(μ) , where f m 

(μ) = 

ˆ λm 
ˆ λm −μ

one 

can thus make the following partitioning 

f (μ) = 

M−K ∑ 

m =1 

f m 

(μ) + 

M ∑ 

m = M−K+1 

f m 

(μ) = f n (μ) + f s (μ) . 

First, we use the fact that, when searching for the M − K small- 

est values of μ, f s ( μ) is approximately constant, which leads to an 

approximation of ˆ μm 

for m ≤ M − K and hence of the signal eigen- 

vectors weights. As for the w m 

, m ≤ M − K, we will provide a high 

SNR approximation of them directly. 

2.2. Approximating the signal eigenvectors weights 

Proposition 1. At high signal to noise ratio, the weights w m 

of Eq. 

(2) applied to the signal eigenvectors can be approximated as 

w m 

≈ −ˆ λ−1 
m 

(T − K) −1 

( 

M−K ∑ 

k =1 

ˆ λk 

) 

m > M − K. (4) 

Proof. First note w m 

for m > M − K is related to the M − K small- 

est solutions of (3) . The latter will be typically of the same mag- 

nitude as the WNP (due to the interlacing property ˆ λm −1 < ˆ μm 

< 

ˆ λm 

) and hence negligible compared to ˆ λM−K+1 , · · · , ̂  λM 

. Hence, 

they belong to some interval I n where ˆ λm 

/ ( ̂ λm 

− μ) ≈ 1 for m > 

M − K which results in f s ( μ) ≈ K when μ ∈ I n . Consequently, the 

M − K smallest values of μ are obtained by solving 

f n (μ) + K = T ⇔ 1 − 1 

T − K 

M−K ∑ 

m =1 

ˆ λm 

ˆ λm 

− μ
= 0 

⇔ 1 − 1 

T − K 

√ 

ˆ λn 

T (
ˆ �n − μI 

)−1 
√ 

ˆ λn = 0 

⇔ det 

( 

ˆ �n − 1 

T − K 

√ 

ˆ λn 

√ 

ˆ λn 

T 

− μI 

) 

= 0 (5) 

where ˆ λn = 

[
ˆ λ1 · · · ˆ λM−K 

]T 
, ˆ �n = diag ( ̂  λn ) and where the 

last equivalence is obtained by multiplying by det 

(
ˆ �n − μI 

)
. It fol- 

lows that ˆ μm 

for m = 1 , · · · , M − K are approximately the eigenval- 

ues of ˆ �n − (T − K) −1 
√ 

ˆ λn 

√ 

ˆ λn 

T 

. 

Let us accordingly consider an approximation of the weights 

w m 

, m > M − K. Let us introduce the notation �k = ̂

 λk − ˆ μk . Note 

that, at high SNR, we have ˆ λk 
ˆ λ−1 

m 

	 1 for k = 1 , · · · , M − K and, 

since ˆ μk < ̂

 λk , it follows that ˆ μk 
ˆ λ−1 

m 

	 1 . It then ensues that, for 

m > M − K

w m 

= −
M−K ∑ 

k =1 

(
ˆ λk 

ˆ λm 

− ˆ λk 

− ˆ μk 

ˆ λm 

− ˆ μk 

)

= −
M−K ∑ 

k =1 

ˆ λm 

�k 

ˆ λ2 
m 

(1 − ˆ λk ̂
 λ−1 
m 

)(1 − ˆ μk ̂
 λ−1 
m 

) 

≈ −ˆ λ−1 
m 

M−K ∑ 

k =1 

�k = −ˆ λ−1 
m 

[ 

M−K ∑ 

k =1 

ˆ λk −
M−K ∑ 

k =1 

ˆ μk 

] 

≈ −ˆ λ−1 
m 

[ 

M−K ∑ 

k =1 

ˆ λk − Tr { ̂  �n − (T − K) −1 

√ 

ˆ λn 

√ 

ˆ λn 

T 

} 
] 

= −ˆ λ−1 
m 

(T − K) −1 

( 

M−K ∑ 

k =1 

ˆ λk 

) 

. � (6) 

2.3. Approximating the noise eigenvectors weights 

Proposition 2. At high signal to noise ratio, the weights applied to 

the noise eigenvectors can be approximated as 

w m 

≈ 1 m ≤ M − K. (7) 

Proof. Let us write, for m ≤ M − K

w m 

= 1 + 

M ∑ 

k = M−K+1 

(
ˆ λk 

ˆ λm 

− ˆ λk 

− ˆ μk 

ˆ λm 

− ˆ μk 

)
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