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a b s t r a c t 

We address the problem of estimating a sparse low-rank matrix from its noisy observation. We pro- 

pose an objective function consisting of a data-fidelity term and two parameterized non-convex penalty 

functions. Further, we show how to set the parameters of the non-convex penalty functions, in order 

to ensure that the objective function is strictly convex. The proposed objective function better estimates 

sparse low-rank matrices than a convex method which utilizes the sum of the nuclear norm and the � 1 
norm. We derive an algorithm (as an instance of ADMM) to solve the proposed problem, and guarantee 

its convergence provided the scalar augmented Lagrangian parameter is set appropriately. We demon- 

strate the proposed method for denoising an audio signal and an adjacency matrix representing protein 

interactions in the ‘Escherichia coli’ bacteria. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

We aim to estimate a sparse low-rank matrix X ∈ R 

m ×n from its 

noisy observation Y ∈ R 

m ×n , i.e., 

Y = X + W , W ∈ R 

m ×n , (1) 

where W represents additive white Gaussian noise (AWGN) ma- 

trix. The estimation of sparse low-rank matrices has been stud- 

ied [7] and used for various applications such as covariance ma- 

trix estimation [4,21,54] , subspace clustering [27] , biclustering [34] , 

sparse reduced rank regression [8,15] , graph denoising and link 

prediction [46,47] , image classification [53] and hyperspectral un- 

mixing [24] . 

In order to estimate the sparse low-rank matrix X , it has been 

proposed [47] to solve the following optimization problem 

arg min 

X ∈ R m ×n 

{
1 

2 

‖ Y − X ‖ 

2 
F + λ0 ‖ X ‖ ∗ + λ1 ‖ X ‖ 1 

}
, (2) 

where ‖·‖ ∗ is the nuclear norm, ‖·‖ 1 is the entry-wise � 1 norm 

and λi ≥ 0 are the regularization parameters. The nuclear norm 

induces sparsity of the singular values of the matrix X , while the 

entry-wise � 1 norm induces sparsity of the elements of X . 

The nuclear norm and the � 1 norm are convex relaxations of the 

non-convex rank and sparsity constraints, respectively. The nuclear 

norm can be considered as the � 1 norm applied to the singular 
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values of the matrix. It is known that the � 1 norm underestimates 

non-zero signal values, when used as a sparsity-inducing regular- 

izer. As a result, the sparse low-rank (SLR) problem in (2) can be 

considered, in general, to be over-relaxed [32] . Further, it is known 

that the performance of nuclear norm for sparse regularization of 

the singular values is sub-optimal [39] . 

In order to estimate the non-zero signal values more accurately, 

non-convex regularization has been favored over convex regular- 

ization [13,43,45,51,52] . Furthermore, it has been shown that non- 

convex penalty functions can induce sparsity of the singular values 

more effectively than the nuclear norm [14,26,28,37,40] . Indeed, it 

was shown that non-convex regularizers are better able to esti- 

mate simultaneously sparse and low-rank matrices in the context 

of spectral unmixing for hyperspectral images [24] . The use of non- 

convex regularizers (penalty functions), however, generally leads to 

non-convex optimization problems. The non-convex optimization 

problems suffer from numerous issues (sub-optimal local minima, 

sensitivity to changes in the input data and the regularization pa- 

rameters, non-convergence, etc.). 

In this paper, we avoid the issues of non-convexity by using 

parameterized penalty functions, which aid in ensuring the strict 

convexity of the proposed objective function. We propose to solve 

the following improved sparse low-rank (ISLR) formulation 

arg min 

X ∈ R m ×n 

{
F (X ) := 

1 

2 

‖ Y − X ‖ 

2 
F + λ0 

k ∑ 

i =1 

φ( σi ( X ) ; a 0 ) 

+ λ1 

m ∑ 

i =1 

n ∑ 

j=1 

φ(X i, j ; a 1 ) 

}
, (3) 
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where k = min (m, n ) and φ : R → R is a parameterized non- 

convex penalty function (see Section 2.1 ). Note that, if λ1 = 0 , 

then the ISLR formulation reduces to the generalized nuclear norm 

minimization problem [36,40] . Further, if λ1 = 0 and φ(x ; a ) = | x | , 
then the ISLR problem (3) reduces to the singular value threshold- 

ing (SVT) problem. 

The contributions of this paper are two-fold. First, we show 

how to set the parameters a 0 and a 1 to ensure that the function F 

in (3) is strictly convex. Second, we provide an ADMM based algo- 

rithm to solve (3) , which utilizes single variable-splitting compared 

to two variable-splitting as in [53] . We guarantee the convergence 

of ADMM, provided the scalar augmented Lagrangian parameter μ, 

satisfies μ > 1. 

1.1. Related work 

The parameterized non-convex penalty functions used in this 

paper have designated non-convexity, which enables the overall 

objective function F in (3) to be strictly convex. In particular, if the 

parameters a 0 and a 1 exceed their critical value, then the func- 

tion F in (3) is non-convex. A similar framework of convex objec- 

tive functions with non-convex regularization was studied for sev- 

eral signal processing applications (see for eg., [18,33,42,50] and 

the references therein). It was reported that non-convex regular- 

ization outperformed convex regularization methods for these ap- 

plications. 

The sparse low-rank (SLR) formulation in (2) is different from 

the low-rank + sparse decomposition [9] , also known as the robust 

principal component analysis (RPCA). Both the SLR and the RPCA 

formulations utilize the nuclear norm and the � 1 norm as sparsity- 

inducing regularizers [55,56] . The RPCA formulation aims to esti- 

mate the matrix, which is the sum of a low-rank and a sparse ma- 

trix. Note that, in the case of RPCA, the matrix to be estimated is 

itself neither sparse or low-rank [11,12] . In contrast, the SLR prob- 

lem (2) , and the one proposed in this paper, considers the case 

wherein the matrix to be estimated is simultaneously sparse and 

low-rank (similar to [24] ). 

Several well-studied convex optimization algorithms, such as 

ADMM [1,25] , ISTA/FISTA [2,22] , and proximal gradient methods 

[17] can be applied to solve convex objective functions of the 

type (2) . The SLR objective function (2) , has been solved using 

Generalized Forward-Backward [44] , Incremental Proximal Descent 

[47] (introduced in [3] ), Majorization-Minimization [31] , and the 

Inexact Augmented Lagrangian Multiplier (IALM) method [35] . The 

IALM method can also be used to solve the SLR problem, although 

with a different data-fidelity term [53] . 

2. Preliminaries 

We denote vectors and matrices by lower and upper case let- 

ters respectively. For a matrix Y , we use the following entry-wise 

norms, 

‖ Y ‖ 

2 
F := 

∑ 

i, j 

| Y i, j | 2 , ‖ Y ‖ 1 := 

∑ 

i, j 

| Y i, j | . (4) 

Further, we use the nuclear norm (also called the ‘Schatten-1’ 

norm) defined as 

‖ Y ‖ ∗ := 

k ∑ 

i =1 

σi (Y ) , (5) 

where σ i ( Y ) represent the singular values of the matrix Y ∈ R 

m ×n 

and k = min (m, n ) . 

2.1. Parameterized non-convex penalty functions 

We propose to use non-convex penalty functions φ( x ; a ) pa- 

rameterized by the parameter a ≥ 0. The value of a provides the 

Fig. 1. (a) Non-convex penalty function φ in (6) for three values of a . (b) The twice 

continuously differentiable concave function s (x ; a ) = φ(x ; a ) − | x | in (8) for the cor- 

responding values of a . 

degree of non-convexity of the penalty functions. Below we define 

such non-convex penalty functions and list their properties. 

Assumption 1. The non-convex penalty function φ : R → R satis- 

fies the following 

1. φ is continuous on R , twice differentiable on R \ { 0 } and 

symmetric, i.e., φ(−x ; a ) = φ(x ; a ) 

2. φ′ ( x ) > 0, x > 0 

3. φ′ ′ ( x ) ≤ 0, x > 0 

4. φ′ (0 + ) = 1 

5. inf 
x 	 =0 

φ′′ (x ; a ) = φ′′ (0 + ; a ) = −a 

An example of a non-convex penalty function satisfying 

Assumption 1 is the rational penalty function [23] defined as 

φ(x ; a ) := 

| x | 
1 + a | x | / 2 

, a � 0 . (6) 

The � 1 norm is recovered as a special case of the non-convex ra- 

tional penalty function (i.e., if a = 0 , then φ(x ; 0) = | x | ). Fig. 1 (a) 

shows the rational penalty function (6) for different values of a . 

Other examples of penalty functions satisfying Assumption 1 are 

the logarithmic penalty [10,38] , arctangent penalty [49] and the 

Laplace penalty [51] . 

The proximity operator of φ [16] , prox φ : R → R , is defined as 

prox φ(y ;λ, a ) := arg min 

x ∈ R 

{ 

1 

2 

(y − x ) 2 + λφ(x ; a ) 
} 

. 

The proximity operator associated with the function φ( x ; a ), satis- 

fying Assumption 1 , is continuous with 

prox φ(y ;λ, a ) = 0 , ∀| y | < λ, (7) 

if 0 ≤ a < 1/ λ. The proximity operators associated with the arctan- 

gent and the logarithmic penalty are provided in [49] . Note that for 

a = 0 , the proximity operator is the soft-threshold function [19] . 
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