
Signal Processing 139 (2017) 70–74 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

Short communication 

Sparse-based estimation performance for partially known 

overcomplete large-systems 

Guillaume Bouleux 

a , ∗, Rémy Boyer b 

a Univ Lyon, INSA-Lyon, UJM-Saint-Etienne, DISP, EA 4570, Villeurbanne 69621, France 
b L2S laboratory University of Paris-Sud, CentraleSupelec, CNRS, France 

a r t i c l e i n f o 

Article history: 

Received 4 July 2016 

Revised 5 April 2017 

Accepted 8 April 2017 

Available online 13 April 2017 

Keywords: 

Overcomplete Bayesian linear model 

Asymptotic estimation performance 

Subspace prior-knowledge 

Large-systems 

a b s t r a c t 

We assume the direct sum 〈 A 〉 �〈 B 〉 for the signal subspace. As a result of post-measurement, a number 

of operational contexts presuppose the a priori knowledge of the L B -dimensional “interfering” subspace 

〈 B 〉 and the goal is to estimate the L A amplitudes corresponding to subspace 〈 A 〉 . Taking into account the 

knowledge of the orthogonal “interfering” subspace 〈 B 〉⊥ , the Bayesian estimation lower bound is derived 

for the L A -sparse vector in the doubly asymptotic scenario, i.e. N, L A , L B → ∞ with a finite asymptotic ra- 

tio. By jointly exploiting the Compressed Sensing (CS) and the Random Matrix Theory (RMT) frameworks, 

closed-form expressions for the lower bound on the estimation of the non-zero entries of a sparse vector 

of interest are derived and studied. The derived closed-form expressions enjoy several interesting fea- 

tures: (i) a simple interpretable expression, (ii) a very low computational cost especially in the doubly 

asymptotic scenario, (iii) an accurate prediction of the mean-square-error (MSE) of popular sparse-based 

estimators and (iv) the lower bound remains true for any amplitudes vector priors. Finally, several ideal- 

ized scenarios are compared to the derived bound for a common output signal-to-noise-ratio (SNR) which 

shows the interest of the joint estimation/rejection methodology derived herein. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The Compressive Sampling or Compressed Sensing (CS) is an at- 

tractive domain which gives new trends for people interested in 

sampling theory of sparse signals [1–3] . The CS theory states that 

a sparse signal, i.e. , a signal that can be decomposed as few non- 

zero values in a given basis (Fourier, wavelets, etc.) can be sam- 

pled at a rate T S lower than the one predicted by the Shannon’s 

theory. This paradigm has been successfully exploited for solv- 

ing ill-posed problems arising for instance in bio-medical analysis, 

RADAR detection, array processing, wireless communications and 

radioastronomy imaging. In the CS framework, it is well known 

that any matrix H of size N × L generated from an i.i.d. centered 

sub-Gaussian distribution with a variance of 1/ N verifies the Re- 

stricted Isometry Property (RIP) [2] with a high probability [1] . On 

the other hand, the doubly asymptotic spectrum and the empirical 

moments of the product H 

T H have been extensively studied in the 

context of the Random Matrix Theory (RMT) [4] . 

In the literature, CS and RMT techniques are usually applied 

to the noisy linear model where there is no interfering signals. 
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However, in a wide range of real life applications, the signal of in- 

terest is often corrupted by a partially known interfering signal and 

an additive noise (see [5–9] for instance). This context motivates 

this work. More specifically, the CS and the RMT frameworks will 

be associated to derive new analytical closed-form expressions for 

the Bayesian lower bound [10] on the estimation of a sparse ampli- 

tude vector [11] for the noisy linear model corrupted by a partially 

known interfering signal. 

2. Compressed Sensing (CS) integrating an a priori knowledge 

2.1. Definition of the CS model 

Let y an observed vector of N measurements corrupted by an 

additive white centered zero-mean, Gaussian circular noise vector 

of variance σ 2 . The standard CS model [1–3] is defined according 

to 

y = �s + n = ��x + n (1) 

where � is the known measurement matrix of size N × K with 

N < K , the vector s = �x of size K × 1 admits an L -sparse rep- 

resentation, denoted by x , in the basis � (which could be Fourier 

basis, Wavelets basis, canonical basis, etc.) with L < N and where 

H 

def . = �� is often called the overcomplete dictionary. 
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One of the main problems risen up by the theory of the Com- 

pressed Sensing relates to the minimum number of measurements 

N needed for retrieving the L -sparse vector x . To address this prob- 

lem, the authors of [1–3] have defined the Restricted Isometry 

Property (RIP). A standard strategy, called universal design strategy 

to ensure that dictionary H satisfies the RIP condition with high 

probability, is to generate the i.i.d. entries of dictionary matrix H 

following a sub-Gaussian distribution with zero mean and variance 

1/ N [1] . 

2.2. Exploiting the “interfering” subspace knowledge 

In many real life applications, we do have the knowledge of in- 

formation given by the physics of the context. Those useful infor- 

mation help in tailoring models that precisely take into account 

the knowledge of particular frequencies [12] for spectral analy- 

sis purpose, spatial angles for array processing [5] or RADAR pro- 

cessing, and have demonstrated their power through biomedical 

analysis or radioastronomy imaging. So, we adopt the following 

“signal+interference” model s = A α + i with i = B β where [ A ] k,� = 

g(kT S − τ� ) with 1 ≤ � ≤ L A , [ B ] k,� ′ = g(kT S − ˜ τ� ′ ) with 1 ≤ ′ � ≤ L B 
are the “steering matrices” parametrized by the regular discretiza- 

tion at rate T S of a known waveform g ( t ) along the time space. 

More precisely, T = { τ� , 1 ≤ � ≤ L A } stands for the time-delays of 

the L A sources of interest α and 

˜ T = { ̃  τ� , 1 ≤ � ≤ L B } is associated to 

the L B interfering sources β. In the sequel, it is assumed that ( i ) 〈 A 〉 
and 〈 B 〉 are two disjoint subspaces, meaning that there is no time 

overlapping between the sources of interest and of the interfering 

sources and ( ii ) 〈 B 〉 is known or previously estimated (matrix A 

and 〈 A 〉 are unknown). For instance, the learning of 〈 B 〉 is based on 

pre-estimation of the clutter echo time-delays in RADAR processing 

or by known strongly shining “calibrator stars” in radioastronomy 

imaging. The problem of interest is to estimate vector α based on a 

measurement vector where the contribution of i has been removed 

using the knowledge of 〈 B 〉 . The standard “signal+interference”

model described by signal s can be extended in the CS framework 

of model (1) following a straightforward strategy. Let � be a ba- 

sis matrix such as [ �] k,k ′ = g((k − k ′ ) T S ) where 1 ≤ k, k ′ ≤ K . For 

a sufficiently fine partition, i.e. , for K > N > L = L A + L B , we have 

〈 A 〉 �〈 B 〉 ⊂〈 �〉 . Let U 

B ψ 
be a N × (N − L B ) orthonormal basis ma- 

trix such as 〈 U 

B ψ 
〉 = 〈 B 

ψ 〉 ⊥ . We have finally the deflated observa- 

tion, defined according to 

ȳ = U 

T 
B ψ 

y = U 

T 
B ψ 

Hx + n̄ (2) 

where n̄ = U 

T 
B ψ 

n and x is a (K − L A ) -sparse such as x T = α. The 

reader will find an illustration of the procedure in Fig. 1 . 

3. ECRB for projected measurements and a large random 

dictionary 

3.1. Dealing with projected measurements 

Let MSE = 

1 
L A 

E ȳ , α[ ‖ ̂  α( ̄y ) − α‖ 2 ] be the normalized Bayesian 

Mean Squared Error for an estimate ˆ α( ̄y ) of α. The Expected 

Cramér-Rao Bound (ECRB) [10] , denoted by C 
U T 

B ψ 
A ψ 

for the 

random amplitude vector α, of unspecified distribution p ( α) 

given the observation model (2) fulfills relation MSE ≥ C 
U T 

B ψ 
A ψ 

= 

σ 2 

L A 
Tr { (A 

ψT P 

⊥ 
B ψ 

A 

ψ ) −1 } where A 

ψ = �A . Introduce model (M ) : 

ȳ | α ∼ N ( μ, �) , where μ = U 

T 
B ψ 

A 

ψ α and � = σ 2 I N−L B 
which is the 

covariance matrix of noise n̄ . After some calculus, the ECRB admits 

the following expression: 

C U T 
B ψ 

A ψ = 

σ 2 
α

SNR 

(na) 

Tr { A 

ψT P 

⊥ 
B ψ 

A 

ψ } 
N − L B 

Tr 

{ (
A 

ψT P 

⊥ 
B ψ 

A 

ψ 

)−1 
} 

L A 
, (3) 

where SNR (na) = E || μ|| 2 
Tr { �} = 

σ2 
αTr { A ψT P ⊥ 

B ψ 
A ψ } 

σ2 (N−L B ) 
is the output and non- 

asymptotic SNR. 

3.2. Doubly asymptotic regime 

The practical interest of CRB-type expressions have been ex- 

posed in [13,14] but we show in this work that expression (3) can 

be reduced to a very simple closed form expression with the ad- 

vantage of remaining valid even for the low sample regime, using 

some powerful results extracted from the RMT [4] where it is as- 

sumed N, L A , L B → ∞ with N / L A → ρ and L B / L A → c . Towards this 

goal, the following Lemma is provided. 

Lemma 1. Let F = U 

T 
B ψ 

A 

ψ ∈ R 

(N−L B ) ×L A whose elements 

{ F i j } i, j=1 ... N−L B ,L A 
are zero mean and i.i.d. with variance 1 

N . Now, for 

N, L A , L B → ∞ , and N / L A → ρ > 1, (N − L B ) /L A → ˜ ρ = ρ − c > 1 , 

then 

1 

L A 
Tr 

{ (
F T F 

)−1 
} 

a.s. −→ 

ρ

˜ ρ − 1 

= 

ρ

ρ − c − 1 

, (4) 

1 

N − L B 
Tr 

{
F T F 

} a.s. −→ 

1 

ρ
, (5) 

where a.s. stands for the almost sure convergence. 

Proof. See the appendix. �

Under the assumptions of Lemma 1 and using (3) , a very com- 

pact expression of C ∞ 

U T 
B ψ 

A ψ 
is enunciated by the following. 

Result 1. Assume that N, L A , L B → ∞ and N / L A → ρ > 1, 

(N − L B ) /L A → ˜ ρ > 1 , then, we have C 
U T 

B ψ 
A ψ 

a.s. −→ C ∞ 

U T 

B ψ 
A ψ 

= σ
2 
α

SNR 
1 

˜ ρ−1 
where 

SNR = 

σ 2 
α

σ 2 ρ
is the almost sure doubly asymptotic equivalent of 

SNR 

(na) . 

4. Benchmarking ECRBs and estimators 

This section is devoted to give a relation of order between the 

ECRB given by (3) with respect to two other ECRBs viewed as 

benchmarks and to analyze the behavior of sparse-based estima- 

tors. Let (M 0 ) : y 0 | α, β ∼ N 

(
A 

ψ α + B 

ψ β, σ 2 
0 

I N 
)

and (M 1 ) : y 1 | α ∼
N 

(
A 

ψ α, σ 2 
1 

I N 
)
. Model M 0 is associated with the scenario where 

no ad-hoc strategy is developed to mitigate the corruption from 

the interference signals. In other words, the interference signals are 

wrongly interpreted as signals of interest. So, this bound does not 

solve the problem of interest and is given by 

C [ A ψ B ψ ] = 

σ 2 
0 

L 
Tr 

{ (
[ A 

ψ B 

ψ ] T [ A 

ψ B 

ψ ] 
)−1 

} 

(6) 

= 

σ 2 
α

SNR 

(na) 
0 

Tr 

{ (
[ A 

ψ B 

ψ ] T [ A 

ψ B 

ψ ] 
)−1 

} 

L 

·
σ 2 

α Tr 
{(

A 

ψT A 

ψ 

)}
+ σ 2 

β
Tr 

{(
B 

ψT B 

ψ 

)}
N 

, (7) 

where SNR 
(na) 
0 

= 
σ2 
α Tr { (A ψT A ψ ) } + σ2 

β
Tr { (B ψT B ψ ) } 

σ2 
0 

N 
and SIR = σ 2 

α/σ 2 
β

. The 

second model M 1 is associated with the ideal free-interference 

scenario. This bound admits the following expression: 

C A ψ = 

σ 2 
1 

L A 
Tr 

{ (
A 

ψT A 

ψ 

)−1 
} 

= 

σ 2 
α

SNR 

(na) 
1 

Tr 
{(

A 

ψT A 

ψ 

)}
N 

Tr 

{ (
A 

ψT A 

ψ 

)−1 
} 

L A 
, 

(8) 
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