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a b s t r a c t 

Frequency estimation of multiple sinusoids is significant in both theory and application. In some ap- 

plication scenarios, only sub-Nyquist samples are available to estimate the frequencies. A conventional 

approach is to sample the signals at several lower rates. In this paper, we address frequency estimation 

of the signals in the time domain through undersampled data. We analyze the impact of undersampling 

and demonstrate that three sub-Nyquist channels are generally enough to estimate the frequencies pro- 

vided the undersampling ratios are pairwise coprime. We deduce the condition that leads to the failure 

of resolving frequency ambiguity when two coprime undersampling channels are utilized. When three- 

channel sub-Nyquist samples are used jointly, the frequencies can be determined uniquely and the correct 

frequencies are estimated. Numerical experiments verify the correctness of our analysis and conclusion. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Frequency estimation of multiple sinusoids has wide appli- 

cations in communications, audio, medical instrumentation and 

electric systems [1–3] . Frequency estimation methods cover clas- 

sical modified discrete Fourier transform (DFT) [4,5] , subspace 

techniques such as “multiple signal classification” (MUSIC) [6] and 

“estimating signal parameter via rotational invariance techniques”

(ESPRIT) [7] and other advanced spectral estimation approaches 

[8,9] . In general, the sampling rate of the signal is required to be 

higher than twice the highest frequency (i.e. the Nyquist rate). The 

sampling frequency increases as the frequencies of the signals, 

which results in much hardware cost in applications [10] . In some 

applications, such as velocity synthetic aperture radar (VSAR) [11] , 

the received signals may be of undersampled nature. So it is nec- 

essary to study frequency estimation from undersampled measure- 

ments. In addition, this problem has a close connection with phase 

unwrapping in radar signal processing and sensor networks [12,13] . 

A number of methods have been proposed to estimate the 

frequencies with sub-Nyquist sampling. To avoid the frequency 

ambiguity, Zoltowski proposed a time delay method which re- 

quires the time delay difference of the two sampling channels less 

than or equal to the Nyquist sampling interval [14] . By introducing 

properly chosen delay lines, and by using sparse linear prediction, 
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the method in [15] provided unambiguous frequency estimates 

using low A/D conversion rates. Li et al. [16] made use of Chinese 

remainder theorem (CRT) to overcome the ambiguity problem, 

but only single frequency determination is considered. Bourdoux 

used the non-uniform sampling to estimate the frequency [17] . 

Some scholars used multi-channel sub-Nyquist sampling with 

different sam pling rates to obtain unique signal reconstruction 

[18,19] . These methods usually impose restriction on the number 

of the frequency components, which depends on the number of 

the channels. Based on emerging compressed sensing theory, sub- 

Nyquist wideband sensing algorithms and corresponding hardware 

were designed to estimate the power spectrum of a wideband 

signal [20–22] . However, these methods usually require random 

samples, which often leads to complicated hardware, making the 

practicability discounted. In [23] and [24] , two channels with 

coprime undersampling ratios are utilized to estimate line spectra 

of multiple sinusoids. By considering the difference set of the 

coprime pair of sample spacings, virtual consecutive samples are 

generated from second order moments [25] . The method only re- 

quires double sub-Nyquist channels without additional processing, 

the hardware is simpler than the most of former methods. 

In this paper, we use three channels other than two channels 

with coprime undersampling ratios to get enough data. It is 

demonstrated that the estimated frequencies sometimes can not 

be uniquely determined when only two channels with coprime 

undersampling ratios are utilized. In the sampling scheme of 

multiple channels, if the ambiguous frequencies estimated from 

single channel are matched successfully, the correct estimated fre- 

quencies will be found [26] . Through the analysis for the matching 

http://dx.doi.org/10.1016/j.sigpro.2017.04.013 

0165-1684/© 2017 Published by Elsevier B.V. 

http://dx.doi.org/10.1016/j.sigpro.2017.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.04.013&domain=pdf
http://dx.doi.org/10.13039/501100001809
mailto:haijian.zhang@whu.edu.cn
http://dx.doi.org/10.1016/j.sigpro.2017.04.013


S. Huang et al. / Signal Processing 139 (2017) 96–101 97 

process, we deduce the condition that leads to the failure of 

resolving frequency ambiguity. With the samples obtained from 

the three channels, the MUSIC algorithm is used to estimate the 

frequencies, which avoids the complex matching process. The 

paper is organized as follows: Section 2 gives our analysis and 

method. Simulation results are shown in Section 3 . The last section 

draws conclusions. 

2. Proposed method 

2.1. Problem formulation 

Consider a complex signal x ( t ) containing K frequency compo- 

nents with unknown constant amplitudes and phases, and additive 

noise that is assumed to be a zero-mean stationary complex 

white Gaussian random process. The samples of the signal at the 

sampling rate F S can be written as 

x (n ) = 

K ∑ 

k =1 

s k e 
j(2 π f k n/F S ) + w (n ) , n = 1 , 2 , · · · , (1) 

where f k is the k th frequency, s k is the corresponding complex 

amplitude, and w ( n ) is additive Gaussian noise with variance σ 2 . 

Assume that the upper limit of the frequencies is known, but we 

only have low-rate analog-to-digital converters whose sampling 

rates are far lower than the Nyquist rate. Undersampling leads 

to spectral aliasing and frequency ambiguity. Many articles use 

multi-channel measurement systems to solve the problem. We 

shall demonstrate that at least three undersampled channels with 

specific rates can guarantee the success of resolving frequency 

ambiguity. 

2.2. Unfolding in the frequency domain 

Suppose the highest frequency contained in the signal is lower 

than f H , we sample at the rate F S1 = f H /a (a > 1) , where a is 

known as the undersampling ratio. 1 For ease of analysis, a is re- 

stricted to be an integer. The collected samples can be written as 

x (n ) = 

K ∑ 

k =1 

s k e 
j2 π f k ·na/ f H + w (n ) , n = 1 , 2 , · · · . (2) 

If we regard these samples as normal data sampled at the Nyquist 

rate and process them by methods such as DFT or conventional 

subspace techniques, a formal estimation of ˆ f k will be obtained. 

If a = 1 , the normalized frequency ˆ f k / f H is the correct estimate. In 

the case of undersampling, the normalized frequency ˆ f k / f H is actu- 

ally the estimate of a · f k / f H , but they can not be one-to-one corre- 

spondence because the values of a · f k / f H may be greater than 1. In 

other words, we can not get a unique estimate of f k from 

ˆ f k . Due to 

the periodicity of trigonometric functions, the estimated normal- 

ized frequency a ̂  f k / f H differs from af k / f H by an integer κ , i.e., 

ˆ f k = f k − κ · f H /a, κ ∈ N . (3) 

Without loss of generality, assume that ˆ f k is the minimum 

value that satisfies (3) in the interval (0, f H ), all possible eligible 

frequencies can be unfolded as 

˜ f k = 

ˆ f k + αk · f H /a, αk = 0 , 1 , · · · , a − 1 . (4) 

Thus we obtain a series of eligible frequencies from one sub- 

Nyquist channel. If the true value of αk is solved, the correct 

estimate of f k can be found from 

˜ f k . Obviously, it’s almost im- 

possible to determine the correct frequencies through only one 

sub-Nyquist sample sequence. 

1 Actually the Nyquist rate in real number field is 2 f H , in this paper we assume 

that complex signals can be sampled directly. 

2.3. The match of the frequencies 

In order to resolve frequency ambiguity caused by undersam- 

pling, another channel sampled at the rate F S2 = f H /b (b > 1) is 

required. Consequently, another set of the eligible frequencies can 

be obtained, namely 

˜ f ′ k = 

ˆ f ′ k + βk · f H /b, βk = 0 , 1 , · · · , b − 1 , (5) 

where ( ∗) ′ denotes the parameters related to the second channel. 

For each k , at least one value of ˜ f ′ 
k 

is the same with some value 

of ˜ f k . In other words, the set composed of ˜ f k and that composed 

of ˜ f ′ 
k 

contain the same frequency, which is the correct estimate. 

However, the matchup of the eligible frequencies among different 

k is unknown. For every k , if ˜ f k and 

˜ f ′ 
k 

are matched one to one, 

the correct frequencies will be found. 

To illustrate this process more clearly, we give an example. 

We assume that the highest frequency in the signal is lower than 

60 Hz and the undersampling ratios of the two channels are 

a = 3 and b = 4 , respectively. The matching process of the eligible 

frequencies obtained from the two channels are shown in Fig. 1 . 

In Fig. 1 (a), the true frequencies are taken as 22 Hz and 25 Hz. 

Through the first channel, each frequency is unfolded into 3 pos- 

sible frequencies according to (4) . Similarly, 4 possible frequencies 

are obtained for each true frequency through the second channel. 

We need to find the equal values in the eligible frequencies of 

the same frequency component in different channels. We can see 

that the two sets of eligible frequencies coincide at 22 Hz and 

50 Hz, which is the true frequencies. However, such a matching 

process is not always smooth. In Fig. 1 (b), the true frequencies are 

25 Hz and 50 Hz. The two sets of eligible frequencies coincide not 

only at 25 Hz and 50 Hz but also at 5 Hz and 10 Hz. Obviously, 

matching the eligible values of f 1 with those of f 2 between the 

two channels results in an erroneous match. In fact, we can not 

tell which of the matching results is correct unless we know the 

true frequencies. This matching process also makes sense for more 

frequency components. 

Next we analyze the matching process of the frequencies. Let 

˜ f m 

= 

˜ f ′ l , l, m = 1 , 2 , · · · , K, (6) 

we have 

ˆ f m 

+ αm 

· f H /a = 

ˆ f ′ l + βl · f H /b, (7) 

i.e., 

b αm 

− a βl = ab 

(
ˆ f ′ l − ˆ f m 

)/
f H . (8) 

The matching process amounts to solving αm 

and β l from (8) . De- 

noting the true values of αm 

, β l by ᾱm 

, β̄l , we have 

f m 

= 

ˆ f m 

+ ᾱm 

· f H /a, f l = 

ˆ f ′ l + β̄l · f H /b. (9) 

Substituting (9) into (8) yields 

b αm 

− a βl = ab ( f l − f m 

) / f H + b ̄αm 

− a ̄βl . (10) 

To solve the binary indefinite Eq. (10) , we introduce the following 

Bézout’s identity [27] : 

Theorem 1. Let a and b be positive integers with greatest com- 

mon divisor equal to d. Then there are integers u and v such that 

au + bv = d. In addition, the greatest common divisor d is the small- 

est positive integer that can be written as au + bv , and every integer 

of the form au + bv is a multiple of the greatest common divisor d. 

We focus on the situation that a and b are coprime. Accord- 

ing to Bézout’s identity, when a ⊥ b , (10) has integer solutions as 

long as its right hand side is an integer. Moreover, since αm 

∈ 

{ 0 , 1 , · · · , a − 1 } and βl ∈ { 0 , 1 , · · · , b − 1 } , the Eq. (10) just has a 

unique satisfactory solution. When l = m, the unique true values 
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