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a b s t r a c t 

The conventional quantum state tomography (QST) needs large number of measurements to reconstruct 

the quantum state. Thanks to the compressive sensing (CS) theory, one can recover a pure or nearly pure 

quantum state with an acceptable accuracy given much fewer number of measurements. However, most 

existing algorithms for CS based QST are rather slow and difficult to be implemented in practice. To fill 

the gap between the CS theory and practical QST, this paper firstly applies an improved Alternating Direc- 

tion Multiplier Method (ADMM) combining with the Iterative Shrinkage-Thresholding Algorithm (ISTA), 

IST–ADMM for short, aiming at improving the efficiency of QST problem in particular with much lower 

number of measurements. The IST–ADMM avoids computing the inverse of large-scale matrix, reduces 

the computational time and required memory space. The computation complexity is reduced from O( d 6 ) 

for least square (widely used in QST), and O(m d 4 ) for Fixed Point-ADMM in our previous work, to IST–

ADMM’s O(m d 2 ) . The proposed algorithm makes it practical to reconstruct high dimensional quantum 

states provided fewer number of measurements. The simulations verify the superiority of the proposed 

algorithm, where it takes 3.13 minutes to reconstruct an 8-qubit density matrix with 96.17% accuracy, 

which is faster than many existing and our previous work. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Quantum state tomography (QST) is a fundamental technique 

of quantum information processing, and its results determine the 

accuracy of the system afterwards such as in quantum computing 

and quantum communication [1] . The process of QST can be de- 

scribed as the process to recover a density matrix ρ of the quan- 

tum state given a series of measurements obtained from physical 

experiments. An n qubits quantum state can be fully represented 

by its density matrix ρ in a d dimensional Hilbert space [2] , where 

d = 2 n and ρ is a Hermitian matrix. O( d 2 ) measurements are usu- 

ally required to fully recover the density matrix ρ due to the com- 

plexity of the system [3] . 

QST has its unique characteristics that distinguishe it from 

other optimization problems. Unlike classical systems, quantum 

mechanical measurements capture collapsed states in probabilities 

due to the Heisenberg uncertainty principle. Density matrices are 

supposed to hold its properties, and quantum measurements are 

costly. The new signal processing approach, compressed sensing 
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(CS), gives us a better alternative to estimate a quantum state with 

fewer measurements. Proposed by Candes and Donaho [4,5] , CS 

is a novel data acquisition and sampling theory that can process 

structured signals (sparse, low-rank, etc.) more efficiently [6,7] . It 

implies that only few essential data is required to exactly recon- 

struct the original signal by solving a CS-based optimization prob- 

lem. Fortunately, people are usually interested in pure or nearly 

pure states practically in quantum systems [8] , which means the 

corresponding density matrix ρ is low-rank and its singular values 

mostly vanish. In this case, the low-rank density matrix ρ can be 

reconstructed accurately with fewer measurements. Candes et al. 

[9] and Cai et al. [10] gave sufficient conditions to precisely recon- 

struct a k -sparse signal (the signal vector has k non-zero elements). 

Gross demonstrated that if the sensing matrix A satisfies the rank 

Restricted Isometry Property (RIP), O( d · r ln d ) measurements are 

enough to estimate nearly pure quantum states [1] . However, these 

works usually provide theoretical bounds with orders, many con- 

stants and parameters in the expression, which might confuse re- 

searchers with quantum physics backgrounds. Meanwhile, few ex- 

isting works studied how many measurements are really required 

in practice, and what the sampling rate is needed for CS based QST 
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if we want to recover the density matrix with certain level of ac- 

curacy. 

From the algorithmic perspective, the algorithms for convex op- 

timization problems via CS have been studied widely. These prob- 

lems mainly focus on minimizing the � 1 norm or nuclear norm. 

For minimizing � 1 norm, the algorithms include Interior Point 

(IP) [11] , Gradient Projection (GP) [12] and Iterative Shrinkage- 

Thresholding Algorithm (ISTA). ISTA was proposed to solve Wavelet 

image convolution recovery problems [13,14] and later it was 

widely adopted to solve linear inverse problems with sparse con- 

straints [15] . Daubechies et al. [16] proved the convergence of ISTA. 

For minimizing the nuclear norm, Yang and Yuan [17] introduced 

Augmented Lagrangian Method (ALM) and ADMM. Li and Cong 

[8] firstly applied ADMM to compressive quantum state recon- 

struction problems with both � 1 norm and nuclear norm. The solu- 

tion has a good accuracy but the complex computation caused by 

high dimensional matrix inversion limits its applications. For in- 

stance, it takes almost three hours with 92.43% accuracy to recon- 

struct a 7-qubit density matrix in MATLAB on the computer with 

2 cores of 2.4 GHz Intel Xeon E5-2407 CPUs. Hence we hope to 

improve the algorithm further in terms of efficiency and accuracy. 

In this paper, we make several contributions in CS based QST 

as follows. Firstly, we propose a novel algorithm for density ma- 

trix reconstruction given fewer number of measurements, with less 

computational time and better accuracy. The proposed algorithm 

combined an adaptive ADMM framework with a nuclear norm ISTA 

algorithm. Specifically, in each iteration, we use ISTA to obtain 

the solutions of sub-problems and then use the ADMM to up- 

date variables alternately. The IST–ADMM avoids computing the in- 

verse of large-scale matrix, is capable of handling outlier errors, 

and approaches the true density matrix more rapidly comparing 

to several prevailing methods and our previous work. In particu- 

lar, the computation has been reduced from O( d 6 ) for least square, 

O(m d 4 ) for FP-ADMM in [18] , to O(m d 2 ) for IST–ADMM in this pa- 

per. In addition, we estimate the constants and parameters in the 

theoretical bounds of number of measurements for different qubits 

derived by previous works. These proper values match our simu- 

lation bounds and can provide a guidance to the sampling rates 

for researchers who intend to implement CS based QST in prac- 

tice. Moreover, we study the time and accuracy required to recon- 

struct density matrices of qubits n = 5 , 6 , 7 , 8 respectively. Com- 

pared with the least square (LS) and previous ADMM method for 

QST, the proposed algorithm demonstrates its superiority in time 

and much higher estimation accuracy, especially for high dimen- 

sional quantum systems. 

This paper is organized as follows. In Section 2 , we give the 

theoretical lower bounds of measurement rates for different qubits 

using some relative formulas. In Section 3 , we propose the IST–

ADMM algorithm in detail. Numerical experiments and results 

analysis are given in Section 4 . Finally the conclusion is summa- 

rized in Section 5 . 

2. Lower bounds of measurement rates provided by CS 

The state of an n -qubit quantum system can be described by 

a d × d density matrix ρ . The task of quantum state tomogra- 

phy is to reconstruct the density matrix ρ given certain mea- 

surements. The CS theory provides lower bounds of the num- 

ber of measurements required to estimate the quantum state. Let 

W 1 , · · · , W d 2 be an orthogonal basis for C 

d×d , with respect to the 

inner product ( W i , ρ) = tr( W i 
H ρ) , W i 

H is the Hermitian transpose 

of W i . We choose m bases out of d 2 elements, ω 1 , ���, ω m 

at ran- 

dom from { W 1 , · · · , W d 2 } . Let the expectation of measurements b i ∈ 

R 

m , and measuring operator A : C 

d ×d → m , then b i = (A ( ρ) ) i + e i = 

c · tr( ω i 
H ρ) + e i , i = 1 , · · · , m or 

b = A vec (ρ) + e (1) 

where vec( · ) represents the transformation from a matrix to a 

vector by stacking the matrix columns; A ∈ C 

m ×d 2 is the normal- 

ized measurement operator in a matrix form whose i th row con- 

sists of the concatenation of ω i ’s rows; e ∈ R 

m represents the noise 

caused by the system or measuring process; c is a normalized con- 

stant. If we set E( A 

H A ) = I where E represents the expectation 

overall A , c would be c = d/ 
√ 

m [8] , m is the number of measure- 

ments. 

Since the degree of the freedom of ρ is d × d , usually people 

need O( d 2 ) measurements to give a unique solution by solving a 

system of linear equations. Yet if the quantum system is known 

as pure or nearly pure, the density matrix ρ has a low rank [1] . 

The density matrix reconstruction can be converted to a convex 

optimization problem by minimizing its nuclear norm [8] : 

minimize ‖ ρ‖ ∗
s.t. ‖ 

A vec (ρ) − b ‖ 

2 
2 ≤ ε, ρH = ρ, ρ � 0 

(2) 

where ρ ∈ C 

d×d ; ‖·‖ ∗ represents the nuclear norm, which is equal 

to the sum of singular values, m 	 d 2 ; ‖·‖ 2 represents the � 2 
norm, ρH is the Hermitian transpose of ρ; ρ 
 0 means ρ is a 

positive semi-definite matrix. 

To make sure that the fewer measurements b contain the es- 

sential information of ρ , A is supposed to satisfy the rank RIP [19] . 

The lower bound of measurements has been derived according to 

RIP [20] . The lower bound implies that how many measurements 

do one need to exactly reconstruct an unknown low-rank matrix ρ
given A ’s property. In general, there are several types of matrices 

that can be used as a sensing matrix A [21] , such as Gaussian ran- 

dom matrix and Bernouli random matrix etc. Here we choose Pauli 

matrices in this paper as the bases of A , because they are widely 

used and easy to be implemented in practical quantum measure- 

ment. 

The Pauli bases, ω i = �
n 
1 
σk , k ∈ 1, ���, 4, for an n -qubit quan- 

tum system are the Kronecker product of a series of complex and 

unitary elemental 2 × 2 Pauli matrices σ i chosen from the four 

possibilities randomly: 

σ1 = 

(
1 0 

0 1 

)
, σ2 = 

(
0 1 

1 0 

)
, σ3 = 

(
0 −i 
i 0 

)
, σ4 = 

(
1 0 

0 −1 

)
. 

Thus there are ( 2 n ) 2 = d 2 Pauli bases totally. We choose m Pauli 

bases randomly and record them as ω a 1 , · · · , ω a m , where a 1 , · · ·, 
a m 

∈ [1, d 2 ], then the sensing matrix A is: 

A = 

⎛ 

⎜ ⎝ 

vec (ω( a 1 )) 
T 

. . . 

vec (ω( a m 

)) 
T 

⎞ 

⎟ ⎠ 

. (3) 

In the quantum state tomography, we define the measurement 

rate η as 

η = m/ d 2 . (4) 

The lower bound of η has been studied when Pauli bases are 

used as the sensing matrix and rank (ρ) = r. If η satisfies [20] 

η ≥ C(1 + β) r ln d /d , (5) 

the solution ρ∗ to the optimization problem (2) is unique and 

equals ρ with the overwhelming probability 

P s ≥ 1 − e −β, (6) 

where β > 0 is a parameter that balances the lower bound of η
and the probability P s . Some conclusions can be drawn from the 
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