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a b s t r a c t 

We introduce highly efficient online nonlinear regression algorithms that are suitable for real life ap- 

plications. We process the data in a truly online manner such that no storage is needed, i.e., the data is 

discarded after being used. For nonlinear modeling we use a hierarchical piecewise linear approach based 

on the notion of decision trees where the space of the regressor vectors is adaptively partitioned based 

on the performance. As the first time in the literature, we learn both the piecewise linear partitioning 

of the regressor space as well as the linear models in each region using highly effective second order 

methods, i.e., Newton–Raphson Methods. Hence, we avoid the well known over fitting issues by using 

piecewise linear models, however, since both the region boundaries as well as the linear models in each 

region are trained using the second order methods, we achieve substantial performance compared to the 

state of the art. We demonstrate our gains over the well known benchmark data sets and provide perfor- 

mance results in an individual sequence manner guaranteed to hold without any statistical assumptions. 

Hence, the introduced algorithms address computational complexity issues widely encountered in real 

life applications while providing superior guaranteed performance in a strong deterministic sense. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Recent developments in information technologies, intelligent 

use of mobile devices and Internet have procured an extensive 

amount of data for the nonlinear modeling systems [1,2] . Today, 

many sources of information from shares on social networks to 

blogs, from intelligent device activities to large scale sensor net- 

works are easily accessible [3] . Efficient and effective processing of 

this data can significantly improve the performance of many signal 

processing and machine learning algorithms [4–6] . In accordance 

with the aim of achieving more efficient algorithms, hierarchical 

approaches have been recently proposed for nonlinear modeling 

systems [7,8] . 

In this paper, we investigate the nonlinear regression problem 

that is one of the most important topics in the machine learning 

and signal processing literatures. This problem arises in several dif- 

ferent applications such as signal modeling [9,10] , financial market 

[11] and trend analyses [12] , intrusion detection [13] and recom- 

mendation [14] . However, traditional regression techniques show 
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less than adequate performance in real-life applications having big 

data since (1) data acquired from diverse sources are too large 

in size to be efficiently processed or stored by conventional sig- 

nal processing and machine learning methods [15–18] ; (2) the per- 

formance of the conventional methods is further impaired by the 

highly variable properties, structure and quality of data acquired at 

high speeds [15–17] . 

In this context, to accommodate these problems, we intro- 

duce online regression algorithms that process the data in an on- 

line manner, i.e., instantly, without any storage, and then discard 

the data after using and learning [18,19] . Hence our methods can 

constantly adapt to the changing statistics or quality of the data 

so that they can be robust and prone to variations and uncer- 

tainties [19–21] . From a unified point of view, in such problems, 

we sequentially observe a real valued sequence vector sequence 

x 1 , x 2 , . . . and produce a decision (or an action) d t at each time t 

based on the past x 1 , x 2 , . . . , x t . After the desired output d t is re- 

vealed, we suffer a loss and our goal is to minimize the accumu- 

lated (and possibly weighted) loss as much as possible while using 

a limited amount of information from the past. 

To this end, for nonlinear regression, we use a hierarchical 

piecewise linear model based on the notion of decision trees, 

where the space of the regressor vectors, x 1 , x 2 , . . . , is adaptively 

partitioned and continuously optimized in order to enhance the 
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performance [10,22,23] . We note that the piecewise linear mod- 

els are extensively used in the signal processing literature to mit- 

igate the overtraining issues that arise because of using nonlinear 

models [10] . However their performance in real life applications 

are less than adequate since their successful application highly de- 

pends on the accurate selection of the piecewise regions that cor- 

rectly model the underlying data [24] . Clearly, such a goal is im- 

possible in an online setting since either the best partition is not 

known, i.e., the data arrives sequentially, or in real life applica- 

tions the statistics of the data and the best selection of the re- 

gions change in time. To this end, as the first time in the literature, 

we learn both the piecewise linear partitioning of the regressor 

space as well as the linear models in each region using highly ef- 

fective second order methods, i.e., Newton–Raphson Methods [25] . 

Hence, we avoid the well known over fitting issues by using piece- 

wise linear models, moreover, since both the region boundaries as 

well as the linear models in each region are trained using the sec- 

ond order methods we achieve substantial performance compared 

to the state of the art [25] . We demonstrate our gains over the 

well known benchmark data sets extensively used in the machine 

learning literature. We also provide theoretical performance re- 

sults in an individual sequence manner that are guaranteed to hold 

without any statistical assumptions [18] . In this sense, the intro- 

duced algorithms address computational complexity issues widely 

encountered in real life applications while providing superior guar- 

anteed performance in a strong deterministic sense. 

In adaptive signal processing literature, there exist methods 

which develop an approach based on weighted averaging of all 

possible models of a tree based partitioning instead of solely rely- 

ing on a particular piecewise linear model [23,24] . These methods 

use the entire partitions of the regressor space and implement a 

full binary tree to form an online piecewise linear regressor. Such 

approaches are confirmed to lessen the bias variance trade off in 

a deterministic framework [23,24] . However, these methods do not 

update the corresponding partitioning of the regressor space based 

on the upcoming data. One such example is that the recursive 

dyadic partitioning, which partitions the regressor space using sep- 

aration functions that are required to be parallel to the axes [26] . 

Moreover, these methods usually do not provide a theoretical jus- 

tification for the weighting of the models, even if there exist inspi- 

rations from information theoretic deliberations [27] . For instance, 

there is an algorithmic concern on the definitions of both the 

exponentially weighted performance measure and the “universal 

weighting” coefficients [19,24,28,29] instead of a complete theoret- 

ical justifications (except the universal bounds). Specifically, these 

methods are constructed in such a way that there is a significant 

correlation between the weighting coefficients, algorithmic param- 

eters and their performance, i.e., one should adjust these parame- 

ters to the specific application for successful process [24] . Besides 

these approaches, there exists an algorithm providing adaptive tree 

structure for the partitions, e.g., the Decision Adaptive Tree (DAT) 

[30] . The DAT produces the final estimate using the weighted av- 

erage of the outcomes of all possible subtrees, which results in a 

computational complexity of O ( m 4 d ), where m is the data dimen- 

sion and d represents the depth. However, this would affect the 

computational efficiency adversely for the cases involving highly 

nonlinear structures. In this work, we propose a different approach 

that avoids combining the prediction of each subtrees and offers a 

computational complexity of O ( m 

2 2 d ). Hence, we achieve an algo- 

rithm that is more efficient and effective for the cases involving 

higher nonlinearities, whereas the DAT is more feasible when the 

data dimension is quite high. Moreover, we illustrate in our exper- 

iments that our algorithm requires less number of data samples to 

capture the underlying data structure. Overall, the proposed meth- 

ods are completely generic such that they are capable of incorpo- 

rating all Recursive Dyadic, Random Projection (RP) and k -d trees 

in their framework, e.g., we initialize the partitioning process by 

using the RP trees and adaptively learn the complete structure of 

the tree based on the data progress to minimize the final error. 

In Section 2 , we first present the main framework for non- 

linear regression and piecewise linear modeling. In Section 3 , we 

propose three algorithms with regressor space partitioning and 

present guaranteed upper bounds on the performances. These al- 

gorithms adaptively learn the partitioning structure, region bound- 

aries and region regressors to minimize the final regression error. 

We then demonstrate the performance of our algorithms through 

widely used benchmark data sets in Section 4 . We then finalize our 

paper with concluding remarks. 

2. Problem description 

In this paper, all vectors are column vectors and represented 

by lower case boldface letters. For matrices, we use upper case 

boldface letters. The � 2 -norm of a vector x is given by ‖ x ‖ = 

√ 

x T x 

where x T denotes the ordinary transpose. The identity matrix with 

n × n dimension is represented by I n . 

We work in an online setting, where we estimate a data se- 

quence y t ∈ R at time t ≥ 1 using the corresponding observed fea- 

ture vector x t ∈ R 

m and then discard x t without any storage. Our 

goal is to sequentially estimate y t using x t as 

ˆ y t = f t ( x t ) 

where f t ( ·) is a function of past observations. In this work, we use 

nonlinear functions to model y t , since in most real life applica- 

tions, linear regressors are inadequate to successively model the 

intrinsic relation between the feature vector x t and the desired 

data y t [31] . Different from linear regressors, nonlinear functions 

are quite powerful and usually overfit in most real life cases [32] . 

To this end, we choose piecewise linear functions due to their ca- 

pability of approximating most nonlinear models [33] . In order to 

construct a piecewise linear model, we partition the space of re- 

gressor vectors into K distinct m -dimensional regions S m 

k 
, where ⋃ K 

k =1 S 
m 

k 
= R 

m and S m 

i 
∩ S m 

j 
= ∅ when i 	 = j . In each region, we use 

a linear regressor, i.e., ˆ y t,i = w 

T 
t,i 

x t + c t,i , where w t, i is the linear 

regression vector, c t, i is the offset and ˆ y t,i is the estimate corre- 

sponding to the i th region. We represent ˆ y t,i in a more compact 

form as ˆ y t,i = w 

T 
t,i 

x t , by including a bias term into each weight vec- 

tor w t, i and increasing the dimension of the space by 1, where the 

last entry of x t is always set to 1. 

To clarify the framework, in Fig. 1 , we present a one dimen- 

sional regression problem, where we generate the data sequence 

using the nonlinear model 

y t = exp (x t sin (4 πx t )) + νt , 

where x t is a sample function from an i.i.d. standard uniform ran- 

dom process and νt has normal distribution with zero mean and 

0.1 variance. Here, we demonstrate two different cases to empha- 

size the difficulties in piecewise linear modeling. For the case given 

in the upper plot, we partition the regression space into three re- 

gions and fit linear regressors to each partition. However, this con- 

struction does not approximate the given nonlinear model well 

enough since the underlying partition does not match exactly to 

the data. In order to better model the generated data, we use the 

second model as shown in the lower plot, where we have eight re- 

gions particularly selected according to the distribution of the data 

points. As the two cases signified in Fig. 1 imply, there are two ma- 

jor problems when using piecewise linear models. The first one is 

to determine the piecewise regions properly. Randomly selecting 

the partitions causes inadequately approximating models as indi- 

cated in the underfitting case on the top of Fig. 1 [22] . The second 

problem is to find out the linear model that best fits the data in 
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