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a b s t r a c t 

Watermark detection is a way of verifying the existence of a watermark in a watermarking scheme used 

for copyright protection of digital data. Statistical modeling of wavelet subband coefficients has been 

extensively used in watermark detection. The effectiveness of a watermarking scheme depends directly 

on how the wavelet coefficients are modeled. It is known that the vector-based hidden Markov model 

(HMM) is a very powerful statistical model for describing the distribution of the wavelet coefficients, 

since it is capable of capturing the subband marginal distribution as well as the inter-scale and cross ori- 

entation dependencies of the wavelet coefficients. In this paper, it is shown that modeling using the 

vector-based HMM gives a better fit for the empirical data in comparison to modeling with Cauchy, 

Bessel-K form (BKF) and generalized Gaussian (GG) distributions. In view of this, we propose a locally- 

optimum blind watermark detector using the vector-based HMM in the wavelet domain. In a Bayesian 

framework, closed-form expressions for the mean and variance of a test statistic are derived, experimen- 

tally validated and used in evaluating the performance of the proposed detector. Using a number of test 

images, the performance of the proposed detector is evaluated. It is shown that the proposed detector 

provides a detection rate higher than that provided by other detectors designed based on the Cauchy, 

Gaussian, BKF or GG distributions for the wavelet coefficients. The proposed detector is also shown to be 

highly robust against various kinds of attacks. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Watermarking is a way of embedding a key into the origi- 

nal data in order to increase its security and facilitate copyright 

protection. Based on the domain used for embedding the water- 

mark, image watermarking algorithms can be classified into two 

categories: spatial [1,42] and frequency [2–23] . Frequency domain 

techniques, such as watermarking based on discrete Fourier trans- 

form (DFT) [3] , discrete cosine transform (DCT) [4–8,43,46] or dig- 

ital wavelet transform (DWT) [8–21] , have been used in recent 

works. Depending on the detection methods, existing watermark- 

ing schemes can also be classified into two major categories: in- 

formed detection, where the host signal is available at the de- 

tector during the watermark detection process, and blind detec- 

tion, where the host signal is not available [18,44] . In order for 

a blind watermark detection to be realized, advantage is usually 

taken of the statistical properties of the image. Every image has 

certain features and characteristics. In statistical modeling, it is in- 
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tended to capture these characteristics using a small number of 

parameters. In recent works, statistical image modeling has been 

focused mostly on transform domains in which the energy den- 

sity has a more local structure. Among all the transforms em- 

ployed, wavelet transform has received greater acceptance due to 

its multiresolution and compression properties. The wavelet sub- 

band coefficients were previously assumed to be independent and 

simply modeled by marginal statistics such as the Gaussian [20] , 

generalized Gaussian (GG) [4,15–17,21,45] , Cauchy [5,6,21] alpha- 

stable [5,6] , Gauss-Hermite [9] and Bessel K-form (BKF) [13,14] and 

[25] distributions. The marginal PDFs cannot capture the depen- 

dency of the wavelet coefficients in a single subband or between 

subbands and therefore, such PDFs cannot be made to fit well the 

empirical PDF of the wavelet coefficients. However, the wavelet co- 

efficients have strong dependencies across the scales. In view of 

this, joint statistical models in the wavelet domain, namely, hidden 

Markov models (HMMs) [26–34] and Markov random field (MRF) 

priors [35] , have been proposed to capture the inter-scale depen- 

dencies of the wavelet coefficients. In the case of model-based de- 

tection algorithms, most of the existing methods in the wavelet 

domain are based on the assumption that the wavelet coefficients 
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have Gaussian distribution so that the common correlation detec- 

tor can be used for detection. However, correlation-based detectors 

are not optimal for non-Gaussian data and in addition, they ignore 

the dependencies among the wavelet coefficients. The use of opti- 

mal or locally-optimal (LO) detectors based on the signal statistics 

have been proposed and shown to provide significantly better de- 

tection results than that provided by correlation-based detectors 

in various transform domains [36,39] . In [16,17] , LO detectors have 

been designed for watermarking schemes in which the DFT, DCT or 

DWT coefficients of images have been modeled by the GG distribu- 

tion. In [4] , GG modeling has been applied on DCT coefficients, and 

the detector has been designed based on a maximum likelihood 

decision rule. In [15] , LO detector has been developed using GG 

modeling. However, it is difficult to determine its performance in 

general situations, since the asymptotic performance has not been 

provided in this work. In [5] , the LO watermark detector has been 

designed by modeling the DCT coefficients using the Cauchy dis- 

tribution. In [21] , Cauchy and GG PDFs are applied to model the 

detail subband coefficients of DWT. In [13] , LO watermark detec- 

tor has been proposed in which the BKF distribution is used for 

modeling the DWT coefficients. 

The performance of a statistical model-based detection of a wa- 

termark is highly influenced by the accuracy of the model itself. 

There are a number of distributions that have been used in wa- 

termark detection; however, there is still scope to explore further 

the suitability of distributions to improve the performance of wa- 

termark detectors. Some initial work in this direction can be found 

in [33] . The objective of the present work is to propose a locally 

optimum blind watermark detector using the vector-based hidden 

Markov model in the wavelet domain. We choose the wavelet do- 

main over DFT or DCT since the former has the properties of local- 

ization, multi-resolution, human visual system modeling and com- 

pression, which are very relevant to watermarking. This model is 

shown to provide a good fit for the distribution of the wavelet 

coefficients in view of its ability to capture the inter-scale and 

cross orientation dependencies between the wavelet coefficients. A 

formulation for watermark detection is carried out using the log- 

likelihood ratio test. A closed-form expression for the test statis- 

tics of the receiver operating characteristic curve of the proposed 

detector is obtained. The performance of the proposed watermark 

detector is investigated through experiments and compared with 

those of the other existing detectors. The robustness of the pro- 

posed watermarking scheme against various attacks is also studied. 

This paper is organized as follows. In Section 2 , the suitabil- 

ity of the vector-based HMM for modeling of wavelet transform 

is studied. In Section 3 , watermark detector using the vector- 

based HMM is presented. Section 4 provides simulation results and 

Section 5 concludes the paper. 

2. Wavelet domain hidden Markov model 

Wavelet transform has some attractive features such as lo- 

cality, multiresolution and compression, which make it a desir- 

able choice in statistical signal processing. Beside these primary 

features, the wavelet transform also has the properties of non- 

Gaussianity (wavelet coefficients have peaky, heavy-tailed marginal 

distributions) and persistence across scales (large/small values of 

wavelet coefficients tend to spread across scales). Taking into ac- 

count these properties of the wavelet transform, a hidden Markov 

model in the wavelet domain has been proposed in [26] . Wavelet 

transform of a typical signal consists of a small number of large co- 

efficients and a large number of small coefficients, each coefficient 

can be considered as being in one of two states, “high” or “low”

depending on the level of energy it contains. The result is a two- 

state mixture model for each wavelet coefficient called a two-state 

HMM. The two-state HMM models the non-Gaussian marginal PDF 

as a two-component Gaussian mixture. If a wavelet coefficient is 

small (large), its hidden state is labeled as small (high). The small 

state corresponds to the Gaussian component with a relatively 

small variance and captures the peakiness around the mean value, 

whereas the high state corresponds to the high variance Gaus- 

sian components, capturing the heavy tails. It should be noted that 

although each wavelet coefficient is conditionally Gaussian, due 

to the randomness of states, the overall density function is non- 

Gaussian. The two-state HMM can readily be extended to M-state 

HMM [26] . 

In an M-state HMM, for each wavelet coefficient x ij , i and j 

representing the node and scale, respectively, there is a hidden 

state S ij with the probability mass function P (S i j = m ) = P m 

i j 
, m = 

1 , 2 , . . . , M. Conditioning on S i j = m, x ij follows a Gaussian density 

with mean μm 

i j 
and variance (σ m 

i j 
) 2 . The marginal distribution of 

the wavelet coefficients in the i th node and j th scale can be written 

as 

f X (x i j ) = 

M ∑ 

m =1 

p m 

i j √ 

2 πσ m 

i j 

exp 

{−(x i j − μm 

i j 
) 2 

2(σ m 

i j 
) 2 

}
(1) 

where 
∑ M 

m =1 p 
m 

i j 
= 1 . There is an inter-scale dependency between 

each of the wavelet coefficients at a coarse level, parent, and 

the corresponding four coefficients at the next level, children (see 

Fig. 1 (a), scalar-based HMM). The persistence across scales is cap- 

tured through state transition probability matrices, A ij given by 

A i j = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

p 1 → 1 
i j 

p 1 → 2 
i j 

. . . p 1 → M 

i j 

p 2 → 1 
i j 

. . . p 2 → M 

i j 

. . . 
. . . 

. . . 

p M→ 1 
i j 

· · · · · · p M→ M 

i j 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

M×M 

(2) 

where p m → m 

′ 
i j 

is the probability of a child coefficient being in 

state m given its parent coefficient in state m 

′ , j = 1 , 2 , . . . , J and 

m 

′ = 1 , 2 , . . . , M. By denoting the parent of the node i by ρ( i ) in 

the wavelet coefficient tree, we have 

P (S i j = m ) = 

∑ 

m 

′ 
P (S ρ(i ) = m 

′ ) P (S i j = m | S ρ(i ) = m 

′ ) (3) 

To reduce the number of the model parameters, we use the tied 

version of scalar-based HMM, i.e., all the nodes at the same scale 

j have the same statistics. Hence, we can write A i j = A j , p m 

i j 
= p m 

j 
, 

μm 

i j 
= μm 

j 
and σ m 

i j 
= σ m 

j 
, ∀ i . Thus, 

p m 

j = 

∑ 

m 

′ 
p m 

′ 
j−1 p 

m → m 

′ 
j , ∀ j = 2 , 3 , . . . , J (4) 

If p j = [ p 1 
j 
, p 2 

j 
, . . . , p M 

j 
] , then p j = p j−1 A j . Thus, 

p j = p 1 A 2 A 3 . . . A j , ∀ j = 2 , 3 , . . . , J (5) 

Therefore, the scalar-based HMM is defined by a set of model 

parameters for each orientation d = LH, HL or HH , as 

�d = 

{
p 1 , A 2 , . . . , A J ;μm 

j , σ
m 

j , ∀ j = 1 , 2 , . . . , J; m = 1 , 2 , . . . , M 

}d 

(6) 

To enhance the capability of the wavelet domain scalar-based 

HMM model to capture the cross-orientation dependency of the 

wavelet coefficients, grouping coefficients at the same location and 

scale into vectors, and then modeling them by a single multidi- 

mensional HMM has been proposed in [29] . This results in a sin- 

gle vector HMM � for the entire input image. If x d 
i j 

denotes the 

wavelet coefficients at orientation d , node i and scale j , the group- 

ing process yields vectors of coefficients as x i j = [ x LH 
i j 

, x HL 
i j 

, x HH 
i j 

] T . 

The cross-correlation of these three wavelet coefficients for the 
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