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a b s t r a c t 

This paper examines a target detection problem in colored Gaussian disturbance with an unknown co- 

variance matrix. In many classic adaptive detectors, the covariance estimator is formed by using only 

the training data. This necessitates calculating a new covariance estimator for each cell under test (CUT) 

during the cell-by-cell target search process. We consider herein an alternative approach that forms the 

covariance matrix estimate by using both test and training data for detection in homogeneous environ- 

ments. This approach is computationally much more efficient since the covariance matrix estimator is 

computed only once and can be applied for target detection at each CUT. Using this estimator, we propose 

a new detector with two tunable parameters, which includes several existing detectors as special cases. 

Closed-form expressions for the probabilities of false alarm and detection are derived in the matched 

and mismatched cases for both non-fluctuating and fluctuating target models. Simulation results reveal 

that the rejection capability of mismatched signals of the proposed detector can be flexibly controlled 

by adjusting its tunable parameters. In particular, the proposed detector can achieve the same detection 

performance as the generalized likelihood ratio test (GLRT) detector derived by Kelly, but has a much 

lower computational burden. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Target detection in Gaussian disturbance with unknown co- 

variance matrix has been a topic of long-standing interest in 

radar/sonar signal processing [1–19] . Typically, the presence of tar- 

get is sought in a (range) cell under test (CUT). The data collected 

from the CUT is referred to as the test (primary) data. A set of 

independent and identically distributed training (secondary) data 

samples, which contain disturbance only, are employed to esti- 

mate the unknown disturbance covariance matrix. In radar prac- 

tice, these training data samples are usually collected from range 

cells adjacent to the CUT. 

Several classic detection algorithms have been proposed in the 

past. Specifically, Kelly proposed a generalized likelihood ratio test 

(GLRT) detector through replacing all unknown parameters with 

their maximum likelihood (ML) estimates under each hypothesis in 
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one step [1] . Meanwhile, an adaptive matched filter (AMF) detector 

was derived with an ad hoc two-step procedure [3] . In particular, 

it first assumes the disturbance covariance matrix is known and 

obtains a GLRT by maximizing over other unknown parameters; 

then a test statistic is obtained by substituting the disturbance co- 

variance matrix with its ML estimate based on the training data 

alone. In [4] , an adaptive coherence estimator (ACE) was proposed 

to handle a non-homogeneity between the test and training data. 

A prominent feature of the above three detectors is that they all 

achieve constant false alarm rate (CFAR) with respect to the un- 

known disturbance covariance matrix. Note that the performance 

of the GLRT, AMF and ACE cannot be flexibly adjusted. In the last 

two decades, researchers have proposed many tunable detectors 

including parametric [10] and two-stage receivers [20–23] . 

Since the location of the target to be detected is generally un- 

known in practice, a grid search is often resorted to, which divides 

the desired radar surveillance area into many (range) cells or bins. 

We need to test each cell one by one to decide whether the in- 

terested target is present or not. For target detection in a specific 

cell, a standard approach is to employ the data collected from cells 

adjacent to the CUT as training data, and then use these training 
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data to estimate the disturbance covariance matrix. Obviously, the 

training data are different for different CUTs, which implies that a 

new estimate of the disturbance covariance matrix has to be cal- 

culated for a distinct CUT in the detectors mentioned above. This 

operation entails heavy computational complexity, particularly in 

space-time adaptive processing [24,25] , where the data dimension 

is the product of the number of array elements and the number 

of taps of the Doppler filters which can be quite high even with a 

moderate number of array antennas and filter taps. 

For target detection in homogeneous environments, Gerlach in 

[26] introduced a new covariance matrix estimator to avoid calcu- 

lating a large number of covariance matrices and their inverses by 

employing both the test and training data. Note that the idea of us- 

ing the whole data block for estimation is similar to the mean level 

adaptive detector (MLAD) with scalar data [27,28] . Once the dis- 

turbance covariance matrix estimate is calculated with the whole 

data block, it can be applied for detection in each cell. Apparently, 

this approach is computationally much more efficient. It should 

be pointed out that the whole data might contain a target signal, 

which can lead to some performance loss, but at the benefit of sig- 

nificantly reducing the computational complexity. The performance 

loss is considered negligible when the training size is sufficiently 

large and targets are rare. 

Based on the covariance estimator using both the test and train- 

ing data, we propose in this paper a new detector with two tun- 

able parameters a and b , which includes the detector in [26] as 

a special case. In particular, the proposed detector with a = 1 and 

b = −1 provides the same detection performance as Kelly’s GLRT 

detector. It should be emphasized that the proposed detector has a 

much lower computational burden than the conventional detectors 

(i.e., Kelly’s GLRT, the AMF, and the ACE). The statistical properties 

of the proposed detector are investigated for both the matched and 

mismatched cases depending on whether the actual steering vector 

is aligned with the nominal one. It should be pointed out that the 

mismatched case is not studied in [26] . Closed-form expressions 

for the probabilities of false alarm and detection of the proposed 

detector are derived for both non-fluctuating and fluctuating tar- 

get models. In the non-fluctuating model, the target amplitude is 

considered to be deterministic, while in the fluctuating model, the 

target amplitude is assumed to have a generalized Chi distribution 

which includes the Rayleigh distribution as a special case. These 

theoretical results are confirmed by using Monte Carlo (MC) simu- 

lations. Numerical results demonstrate that the selective capability 

of the proposed detector can be flexibly adjusted by changing the 

tunable parameters. 

The remainder of this paper is organized as follows. 

Section 2 formulates the problem to be studied. In Section 3 , 

a detector with tunable parameters is proposed, and performance 

analysis is provided in detail. Simulation results are illustrated in 

Section 4 and finally the paper is summarized in Section 5 . 

Notation. Vectors (matrices) are denoted by boldface lower (up- 

per) case letters. Superscripts ( ·) T , ( ·) ∗ and ( ·) † denote transpose, 

complex conjugate and complex conjugate transpose, respectively. 

The notation ∼ means “is distributed as,” and CN denotes a cir- 

cularly symmetric, complex Gaussian distribution. 
d = means the 

former and latter random quantities have the same distribution. 

χ2 
n denotes a real central Chi-squared distribution with n degrees 

of freedom, while χ ′ 2 
n (ζ ) denotes a real non-central Chi-squared 

distribution with n degrees of freedom and a non-centrality pa- 

rameter ζ . | · | represents the modulus of a complex number and 

j = 

√ −1 . C 

m 

n = 

n ! 
m !(n −m )! 

and �( ·) are the binomial coefficient and 

the Gamma function, respectively. 

2. Data model 

Consider the following model of the received data in a CUT: 

x = α s + n , (1) 

where s is a known steering vector of dimension N × 1; α is a de- 

terministic but unknown complex scalar accounting for the target 

reflectivity and the channel propagation effects; the disturbance n 

is assumed to have a circularly symmetric, complex Gaussian dis- 

tribution, i.e., n ∼ CN (0 , R ) , where R is a positive definite covari- 

ance matrix of dimension N × N . These data may be temporal sam- 

ples, spatial samples (obtained with an array), or any mix of the 

above. 

In practice, the disturbance covariance matrix R is usually un- 

known. To estimate it, we impose a standard assumption that there 

exists a set of homogeneous secondary data free of target signal 

components, i.e., { y k | y k ∼ CN (0 , R ) , k = 1 , 2 , . . . , K and K ≥ N} . In 

array signal processing, this set of secondary data are usually col- 

lected from the range cells adjacent to the CUT. Let the null hy- 

pothesis ( H 0 ) be that the target signal is free in the test data and 

the alternative hypothesis ( H 1 ) be that the test data contain the 

target signal. Hence, the detection problem is to decide between 

the null hypothesis 

H 0 : 

{
x ∼ CN (0 , R ) 
y k ∼ CN (0 , R ) , k = 1 , . . . , K, 

(2a) 

and the alternative one 

H 1 : 

{
x ∼ CN (αs , R ) 
y k ∼ CN (0 , R ) , k = 1 , . . . , K. 

(2b) 

It is easy to show that based on these secondary data, the ML 

estimate of the disturbance covariance matrix (up to a scaling fac- 

tor) is 

ˆ R = 

K ∑ 

k =1 

y k y 
† 

k 
. (3) 

Using this disturbance covariance matrix estimate, several classic 

adaptive detectors were proposed, including, e.g., the GLRT [1] , 

AMF [3] , and ACE [4] : 

T GLRT = 

| s † ˆ R 

−1 x | 2 
(s † ˆ R 

−1 s )(1 + x 

† ˆ R 

−1 x ) 

H 1 
≷ 

H 0 

t GLRT , (4) 

T AMF = 

| s † ˆ R 

−1 x | 2 
s † ˆ R 

−1 s 

H 1 
≷ 

H 0 

t AMF , (5) 

T ACE = 

| s † ˆ R 

−1 x | 2 
(s † ˆ R 

−1 s )( x 

† ˆ R 

−1 x ) 

H 1 
≷ 

H 0 

t ACE . (6) 

In the applications of the above three detectors, we need to cal- 

culate a new covariance estimator for a different CUT in the grid 

search stage, which incurs heavy computational burdens, especially 

when the data dimension is high (e.g., in space-time adaptive pro- 

cessing [24,25] ), and/or the number of cells to be tested is large 

(e.g., in high-resolution radar). 

3. Detector with tunable parameters 

To alleviate the computational burden stated above, we esti- 

mate the disturbance covariance matrix by using both the test and 

training data, i.e., 

˜ R = 

ˆ R + xx 

† . (7) 
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