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A B S T R A C T

This paper considers the estimation and detection problems for statistically dependent heavy-tailed signals with
no closed-form probability density function (PDF). We propose two parametric PDF approximations for
symmetric α-stable (SαS) distribution to be utilized in approaches based on the Maximum likelihood (ML)
criterion. The nonlinear least square (LS) and curve fitting are used to compute parameters of the new
formulations which are functions of the characteristic exponent. Moreover, we study binary signal detection in
channels with time-dependent heavy-tailed noise modeled by SαS distribution and first order autoregressive
(AR(1)) process. Using the novel PDF approximations in the ML estimator, an algorithm for model parameters
estimation of the noise is initially developed. Then, new suboptimal receivers are designed through the use of
the new PDF formulations and parameter estimates. Numerical results demonstrate the superiority of the
proposed approximations over the existing formulations, and also good accuracy for the estimation algorithm.
Additionally, it is shown that the proposed detectors operate near optimal receiver and also outperform the
other suboptimal detectors, especially when α is small.

1. Introduction

The impulsive behavior of many natural and man-made noise
sources can be suitably described by symmetric α-stable (SαS) dis-
tribution [1]. For instance, shot noise, radar clutter [2,3], co-channel
interference in some wireless networks [4], and also the noises that
appear in underwater channels and power line communication [5,6]
are properly modeled by SαS distribution. It is usually assumed that
the noise process has statistically independent samples. Nevertheless,
different studies have shown that in several situations, the additive
noise samples are statistically dependent in the time-domain [7]. For
example, the independent heavy tailed noise that passed through the
narrow band filter presents a dependent structure [8]. As another
example, in smart grid monitoring tasks, the measured noise sequence
in the power substation is presented by a hidden Markov model and
heavy tailed distribution [9]. Furthermore, the authors in [10] have
studied signal detection in the first order moving average noise. Also,
the classification of the digital amplitude-phase modulated signal has
been considered in heavy-tailed autoregressive noise [7]. It is note-
worthy that the performance of a detector derived under independent
noise assumption, significantly degrades in situations where the noise
is time-dependent.

In the signal processing applications for signals with heavy-tailed

distributions, there is no closed-form expression for SαS PDF, but, it is
defined according to its characteristic function (CF). Consequently, the
estimation and detection tasks based on the ML criterion need
numerical integrations. This significantly imposes computational com-
plexity and implementation difficulty [11,12]. To deal with this
problem, an alternate model for the SαS PDF can be employed. The
mixture models are used to suitably approximate the SαS distribution.
In [13–15] three types of PDF approximation using the mixture models
have been introduced, namely, the Gaussian mixture model, mixture of
Gaussian and Cauchy and mixture of Cauchy. The mixture of Gaussian
and Cauchy model fits the SαS distribution better than the Gaussian
mixture model, but the mixture of Cauchy model outperforms the other
ones. Nevertheless, these approximations can not properly capture the
tail of the α-stable distribution. In [16], using the asymptotic heavy tail
behavior of the SαS PDF, power-based approximation has been
employed to capture the decay rate of the distribution. For signal
detection in the presence of SαS noise, due to the lack of closed-form
expression for PDF, several suboptimal detectors have appeared in the
literature [17,2,18,19]. Gaussian detector as a linear receiver gives
significantly poor performance in a very impulsive environment. The
Cauchy receiver with better performance and more complexity, is
optimal when α = 1. The myriad detector based on the Cauchy
distribution has been proposed to improve the performance of sub-
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optimal detectors over a wide range of α [20]. Recently, the suboptimal
detectors using the alternate PDF approximations based on the mixture
of Cauchy and power-based function, have been introduced to get
better performance especially for small values of α [15,16].

In this paper, we approximate the SαS distribution by two para-
metric formulations using a rational function with fractional power
series and also a multiplication of exponential and rational functions.
For each approximation, the non-linear LS algorithm is employed to
estimate the model parameters which are functions of the characteristic
exponent α. Using the polynomial fitting and spline theory for these
model parameters, we can find an approximated function of SαS PDF
for every arbitrary value of α. Numerical results show that the proposed
models have good accuracy and outperform the existing approxima-
tions, in terms of integrated square error and Jensen-Shannon
divergence. Moreover, we investigate binary signal detection in the
presence of time-dependent heavy-tailed noise described by the α-
stable AR(1) model. Based on the new approximations, we firstly
propose an algorithm to estimate the model parameters of noise, and
then develop new detectors by considering the dependency structure of
noise. Numerical results present good accuracy of estimates and the
outperforming performance of the new detectors compared to com-
monly used suboptimal detectors. Furthermore, the comparison of
decision regions of the new detectors with the optimal one reveals the
near optimal performance of the proposed receivers.

The remaining sections are organized as follows. The time-depen-
dent impulsive noise model is described in Section 2. We propose two
parametric approximation models for the SαS distribution in Section 3.
An algorithm for model parameters estimation of noise is proposed in
Section 4. In Section 5, the suboptimum receiver structures are derived
and numerically compared through decision boundaries. Finally, using
the Monte Carlo simulation, the performance of the proposed algo-
rithms is evaluated in Section 6.

2. Noise model

In most radio environments, the additive disturbance signal is non-
Gaussian and statistically dependent in time. Furthermore, AR model-
ing has been frequently used to depict the correlation structure by a few
parameters [21,22]. In this paper, we assume that the additive noise is
a SαS process with the first order autoregressive model as following,

x n ξx n z n z n SαS α ρ[ ] = [ − 1] + [ ], [ ] ∼ ( , ). (1)

where, ξ denotes the autoregressive coefficient and z n[ ] indicates the
excitation process with SαS distribution. The α-stale distribution does
not usually have closed-form expression for the PDF and is completely
characterized by its CF as Φ ω Ψ ω( ) = exp{ ( )} when,
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where, α ∈ (0, 2] is the characteristic exponent which determines the
tail heaviness and the decay rate of the distribution. A smaller value of
α provides heavier tail for the distribution, but, a value of α near 2
shows more Gaussian behavior. The noise dispersion ρ is a positive
constant that indicates the spread of the distribution around its center.
The shift parameter μ determines the mean of the distribution when

α1 < ≤ 2 and its median when α0 < ≤ 1. The skewness parameter β
exhibits the symmetry of the distribution around its location para-
meter. Among the class of α-stable distributions, only the Gaussian
(α = 2), Cauchy (α = 1) and Lévy (α β= 0.5, = 0) distributions provide
the closed-form expressions. In particular, by setting μ = 0 and β = 0,
the CF of the SαS α ρ( , ) has the form of,

Φ ω e( ) = ,ρ ω− | |α α
(3)

Using the inverse Fourier transform, the SαS PDF f z( )α can be
numerically calculated. However, in applications based on the PDF,

the numerical evaluation of the integration takes a long time, especially
for smaller values of α. To circumvent this problem, we propose PDF
approximations to the SαS distribution that can be employed in
estimation and detection problems.

3. Approximations to the SαS distribution

As explained before, to approximate the SαS PDF f z( )α , some
alternate formulations have been proposed. Here, before investigating
our proposed models, we briefly review three recent approximations to
the SαS distribution.

A mixture of Cauchy and Gaussian distributions (MoCG) has been
frequently used to present an alternative PDF formulation as [23],
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where k is a weighting factor that depends on α, also, σg is the Gaussian
variance and ρ is the Cauchy scale parameter. In the literature [24], it
has been shown that the SαS PDF decays proportional to z α−(1+ ). Using
this fact, another alternate SαS PDF has been proposed according to
power function as [16],
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The parameters of k1 and k2 can be estimated. The expression in (5)
captures asymptotic decaying rate of the SαS distribution. Recently,
another alternate PDF formulation for the SαS distribution has been
used as a mixture of two Cauchy distributions [15],
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It is required to estimate the unknown parameters of k1, k2, k3 and k4.
In order to get a more general approximation, the two terms in (6) have
been combined to convert to a rational function [15]. In the following,
we propose two parametric expressions as new alternate models for the
SαS α ρ( , ) PDF. Without loss of generality in these approximations, it is
assumed that the scale parameter is ρ = 1z .

3.1. Rational function

Here, we address the SαS PDF approximation through the techni-
que of mixture modeling [25] by utilizing the long-tailed distributions
to form a non-Gaussian mixture model (e.g. mixture of two Cauchy
distributions [15]). In this regard, we use the power-based functions as
heavy-tailed components in the mixture model to explicitly improve the
accuracy of SαS PDF approximation as following,
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According to [15], to have a more general and accurate expression, we
can combine the two components in (7) to form a rational function of
fractional power series as the following expression,
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Due to the fractional power series, this approximation is more
complicated than the mixture of two Cauchy distributions. There are
different methods to determine the model parameters values of
k k k, ,1 2 3 and k4, which are functions of α. We use the nonlinear LS
estimator to determine these unknown model parameters values as
follows,
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where, f z( )α denotes the true SαS PDF and f z( )α is expressed in (8). In
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