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A B S T R A C T

The purpose of this article is to review what has been written on what other authors have called quaternion
wavelet transforms (QWTs): there is no consensus about what these should look like and what their properties
should be. We briefly explain what real continuous and discrete wavelet transforms and multiresolution analysis
are and why complex wavelet transforms were introduced; we then go on to detail published approaches to
QWTs and to analyse them. We conclude with our own analysis of what it is that should define a QWT as being
truly quaternionic and why all but a few of the “QWTs” we have described do not fit our definition.

1. Introduction

In this article we try to show how quaternion wavelet transforms
(QWTs) have been developed. Wavelet transforms represent signals
using a linear combination of basis functions called wavelets, whose
principal characteristic is that they are localised in time or space.
Unlike a representation using periodic basis functions such as sines
and cosines, wavelet transforms allow localised signal content to be
analysed.

As we note at the beginning of Section 4, most of the theory about
wavelets and wavelet transforms, including that about complex wavelet
transforms (WTs) and QWTs, has been developed for real-valued
signals and greyscale images.

However, we are concerned with signals and images which require
more than one component per sample or pixel, for example quaternion
signals and, in particular, colour images represented as arrays of
quaternions: QWTs for processing these will have different properties
from the majority of the QWTs that have appeared so far. As well as
discussing QWTs for quaternion signals and arrays, we also briefly
consider WTs for complex signals.

Throughout the paper, when we refer to signals and time, it should
also be understood that we may mean images and space (in the sense of
position within an image). Most of what we cover generalises to the 2-D
case of images.

In Section 2 we briefly cover the history of real wavelets and
describe their properties. There are three types of wavelet analysis,
using continuous wavelets, discrete wavelets and multiresolution
analysis, and we discuss each of these in turn. There are some problems
with real wavelets and in Section 3 we see how complex wavelets were
introduced to solve them. In Section 4 we survey all articles that have

contributed to the development of QWTs and describe what each
article's authors have done. There is no single approach to QWTs and
in Section 5.4 we say what we believe a “true” QWT should and should
not look like. In Section 6 we present our conclusions.

2. Classical (-valued) wavelet transforms
We start by reviewing briefly the main ideas of wavelets and wavelet

transforms in the real-valued case, in order to provide some context for
the rest of the paper. A much fuller treatment is given by, e.g.,
Kovačević et al. [59].

2.1. Background

The Fourier transform (FT) gives information about the frequency
content of a signal, but nothing about where in time or space its
different constituent frequencies occur. In some applications, for
example with non-stationary signals where some frequency content is
present only for a limited time, it would be desirable to know the
distribution of frequencies over time or space, which led to the
introduction of the short-time Fourier transform (STFT) by Gabor
[29]. A “sliding window” is introduced into the FT, initially centred at
time 0, say; the signal is assumed to be approximately stationary in the
window and its FT is found. The window is then shifted by t and the FT
of the new section of signal is found, and so on until the whole signal
has been covered. In continuous time and frequency the STFT in 1-D,
centred on time t, can be expressed as

∫f ω t f s g s t s( , ) = ( ) ( − )e d ,jωs
STFT
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∞
−

(1)

where g(·) is the window function. In discrete time the STFT becomes
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The function g(·) or g[·] will always be even in practice and some
authors would write g t s( − ) and g t m[ − ] above. Gabor experimented
with a number of different functions for the window g(·) and found the
best he could do was to use a Gaussian; the STFT with this window
function is now called the Gabor transform. We cannot know the exact
frequency at a given time and Heisenberg's Uncertainty Principle
applies per Gabor [30]:

t ωΔ Δ ≥ 1
2
,

(3)

where tΔ is the uncertainty in time and ωΔ is the uncertainty in angular
frequency. The Gabor transform is optimal in the sense that this
inequality theoretically becomes an equality when g(·) is a Gaussian.

A major drawback of the STFT is that once the window is chosen, its
resolution is fixed. There are two extremes to consider: a high
frequency signal with a period less than the width of the window and
only a few oscillations would have a relatively large uncertainty as to its
actual position; and a lower frequency signal with a period longer than
the width of the window would not actually be detected at all.
Heuristically, the (discrete) wavelet transform is similar to an STFT,
but one with a range of different window sizes: a larger number of short
windows to capture the detail at higher frequencies and a smaller
number of long windows for the lower frequencies.

The term “wavelet” had already been used for many years by
geophysicists, e.g., Ricker [88], to refer to a single component of a
seismogram when in the early 1980s, e.g., Grossmann and Morlet [44],
the mathematics of wavelets was developed to allow them to be used as
a tool in signal processing. The simplest wavelet is the Haar wavelet,
which appears to have been so-named in the 1970s or 1980s: Haar [46]
studied systems of orthogonal functions using a set of orthogonal
rectangular basis functions, with each basis function consisting of a
short positive pulse followed immediately by a short negative pulse:

⎧

⎨
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⎩
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t

t
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0 otherwise.

Later, after the development of wavelets, this Haar wavelet was
generalised to ψ t ψ t β( )≔2 (2 − )α β

α α
,

− /2 − , where α β, ∈ {0} ∪ +.1 The

scale factor 2 α− /2 ensures that ∫ ψ t| ( )| dt = 1α β−∞

∞
,

2 . ψ t( ) is called the
mother wavelet and the ψ t( )α β, functions, daughter wavelets; α is a
scale parameter and β is a translation parameter. In Fig. 1, we illustrate
the Haar mother wavelet with two examples of daughter wavelets and
use this notation.

There was little interest in Haar's rectangular pulse until it was
picked up by Lévy [65] as an improvement on the Fourier basis
functions for studying the fine detail of Brownian motion: as demon-
strated by Pinsky [86], Brownian motion can be expressed as a sum of
Haar wavelets.

A square pulse is not the only wavelet that can be used. Strömberg
[100] started the development of discrete wavelets beyond what Haar
had done and Daubechies [23] introduced families of orthogonal
wavelets with compact support. The continuous wavelet transform first
appeared in Zweig et al. [124], although that in Goupillaud et al. [42] is
the oldest which would be recognised today as a wavelet transform.

2.2. Properties of wavelets

Many wavelets have been developed, each with properties suited to
particular applications. All have the property of localisation in space
and time and some have infinite support, but the most popular, as
mathematical objects if not for applications according to Blatter [10, p.
6], have finite support. A wavelet having finite support simply means
that there is a finite interval, outside of which its amplitude is zero. A
wavelet transform should be able to analyse a signal (or image) at
different scales and so the underlying wavelets need to be localised in
spatial frequency. It also needs to encode where in time (or space) these
frequencies occur and so the wavelets need to be localised in time (or
space) as well. A 1-D example of space and time localisation would be a
music score, which shows which musical notes and hence sound
frequencies need to occur and at what times. Wavelet analysis of the
music would theoretically allow the music score to be reconstructed but
Fourier analysis of the same music would not, since it would not reveal
the locations of different frequency content due to individual notes.

The wavelet functions are chosen from  L L( ) ∩ ( )1 2 , the space of
measurable functions that are absolutely and square integrable:

∫ ∫ψ t ψ( ) dt < ∞, and (t) dt < ∞.
−∞

∞

−∞

∞
2

In addition, a wavelet must have zero mean and a squared norm of
unity, so:

∫ ∫ψ t ψ( )dt = 0 and (t) dt = 1.
−∞

∞

−∞

∞
2

We define a wavelet as

 
⎛
⎝⎜

⎞
⎠⎟ψ t

a
ψ t b

a
: → , ↦ 1 − ,a b,

where  a b( , ) ∈ ×+ [10, p. 14]. Note that this definition of ψa b, is
slightly different from the one we used for the ψα β, of the Haar wavelet

above: if ψa b, were that Haar wavelet, we would have a = 2α and b β= 2α .
Both definitions are in use and we also call a and b the scale and
translation parameters respectively. Fig. 1

2.3. The continuous wavelet transform

The continuous wavelet transform

  f a b f a b: × → , ( , ) ↦ ( , )ψ ψ
+

of a signal f is defined as

⎛
⎝⎜

⎞
⎠⎟∫f a b f ψ

a
f t ψ t b

a
( , )≔ , = 1 ( ) − dt,ψ a b, −∞

∞

(4)

where the variables are as we defined in Section 2.2. The result is a data
array

0 0.5

-1

0

1

0 1

-1

0

1

0 1 2

-1

0

1

Fig. 1. The Haar mother wavelet (ii) and two levels of Haar daughter wavelets: (i)

ψ t ψ t( ) = 2 (2 )−1,0 , (ii), ψ t ψ t( ) = ( )0,0 , (iii)
⎛
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⎠⎟ψ t ψ t( ) =1,0
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1 Some authors write ψ t ψ t β( ) = 2 (2 − )α β
α α

,
/2 , but the notation we have used is as per

Daubechies [24, p. 10].
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