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A B S T R A C T

A quaternionic extension of feed forward neural network, for processing multi-dimensional signals, is proposed
in this paper. This neural network is based on the three layered network with random weights, called Extreme
Learning Machines (ELMs), in which iterative least-mean-square algorithms are not required for training
networks. All parameters and variables in the proposed network are encoded by quaternions and operations
among them follow the quaternion algebra. Neurons in the proposed network are expected to operate multi-
dimensional signals as single entities, rather than real-valued neurons deal with each element of signals
independently. The performances for the proposed network are evaluated through two types of experiments:
classifications and reconstructions for color images in the CIFAR-10 dataset. The experimental results show that
the proposed networks are superior in terms of classification accuracies for input images than the conventional
(real-valued) networks with similar degrees of freedom. The detailed investigations for operations in the
proposed networks are conducted.

1. Introduction

Processing multi-dimensional signals, such as color images, is an
important problem in artificial neural networks. Artificial neural net-
works consist of many neurons, interconnected to each other, that
accept only real-valued signals for their input, internal states, and
output. Of course, these neural networks cope with high dimensional
signals by configuring neurons so that each of them covers each
element in these signals. But this type of configuration would be
unnatural because each of elements in multi-dimensional signals is not
independent to each other and these signals should be processed as a
single entity. Thus, for over two decades, applications of complex
values to neural networks have been extensively investigated, as
summarized in the references [1–3]. Besides these studies, neural
networks with dimensions more than two have also been explored: one
motivation is inspired by a natural extension from real-valued neural
networks to complex-valued ones. Another motivation and necessity
arise from engineering applications in which multi-dimensional sig-
nals, such as three-dimensional components in color images (red,
green, and blue) or body coordinates in three dimensional space
X Y Z( , , ), should be processed. Although neural networks for these
applications can be composed by real-valued or complex-valued
neurons, it would be useful to introduce a number system with high
dimensions, the so-called hypercomplex number systems.

Quaternion is a four-dimensional hypercomplex number system
introduced by W.R. Hamilton [4,5]. This number system has been
extensively employed in the fields of modern mathematics, physics,
control of satellites, computer graphics, signal processing, and so on
[6–10]. One of the benefits provided by quaternions is that operators in
quaternions efficiently accomplish the affine transformations in three-
dimensional space, especially spatial rotations, with their compact
representations. Thus, it is expected that neurons with quaternionic
representation and operations would be useful for processing three-
and four-dimensional signals.

Feed forward neural networks, or multilayer perceptron (MLP)
neural networks, are most popular neural networks where input-output
relations can be constructed by adjusting the connection weights in the
network. Adjusting process is also called learning and typically
incorporates least-mean-square (LMS) method. Feed forward neural
network models based on quaternions have been explored in [11–18].

Applications of quaternionic neural networks and quaternionic
LMS have also been explored, such as control problem [12], signal
classification [14], color image processing [13,19], prediction of chaotic
time series [20,21,15,17], forecasting three-dimensional wind signals
[15,17]. Error back-propagation algorithms for training neural net-
works and LMS methods need to calculate gradients in the error
surface in multi-dimensional space, spanned by connection weights or
filter coefficients, in order to minimize the output error. In quaternio-
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nic domain, it is necessary to develop gradient operators with satisfying
analytic (differentiable) conditions, as in the domains of real values or
complex values. Despite the Cauthy-Riemann-Fueter (CRF) equation
claims that only linear functions or constants are analytic in the
quaternionic domain, other classes of analytic conditions and deriva-
tives have been developed [22,23,16,24].

Recently another type of feed forward neural networks with their
training algorithms have been a focus of attention [25–27].

Called Extreme Learning Machine (ELM), this type of networks
does not require gradient-base iterative LMS methods for their
training. ELMs are typically three-layered networks, i.e., one input
layer with neurons that accept external signals, one output layer with
neurons in which output signals can be obtained, and one hidden layer
with neurons that interconnect neurons in the input layer and ones in
the output layer. Some parts of connection weights in the network are
fixed randomly and remaining weights are calculated by solving a so-
called least squares optimization problem. This one-shot learning
scheme has advantages of fast calculation and of no gradient operators.
There are several kinds of extensions investigated, such as many
layered network (so-called deep learning) [28], ELM autoencoder
[29,30], regularized ELM [31], time series prediction [32], and
complex-valued network [33].

Motivated by the work for complex-valued ELM [33], we present a
quaternionic extension of ELM, called Q-ELM, in this paper. Our Q-
ELM is a three-layered network where all parameters, such as inputs,
outputs, and connection weights, are encoded by quaternions, and
operators in calculating neurons' states follow quaternion algebra. The
basic structure of the proposed Q-ELM is the same as the existing
quaternionic multilayer perceptron networks [12], and also has similar
features in quaternionic adaptive filters and quaternionic Kalman
filters [34]. Also, the proposed network resembles so-called quaternio-
nic echo state network [35] for the point that a part of connection
weights are randomly chosen and the rest of weights is determined by
learning algorithms. But the proposed Q-ELM does not utilize gradi-
ents along the error surface produced by the networks, like error back-
propagation algorithm. The performances of our Q-ELM are evaluated
through the classification and autoencoding tasks on CIFAR-10 dataset
[36]. These evaluations include the comparisons with the conventional
(real-valued) ELMs and the quaternionic multilayer perceptron net-
work with a gradient-based learning algorithm [12].

This paper is organized as follows. In Section 2, we first recapitulate
the conventional ELM model and its learning algorithm. Quaternionic
extension of ELM, Q-ELM, is described in Section 3 with the basic of
quaternion algebra. Two types of experimental results on CIFAR-10
dataset are given in Section 4. In Section 5, we discuss the superior
performances for Q-ELM with the results for several tasks. We finish
with conclusions in Section 6.

2. Preliminaries

We first recapitulate a learning algorithm for single hidden layer
feed forward neural networks called the Extreme learning machine
(ELM) [25,26]. ELM is a layered network with three layers, i.e., one
input layer, one hidden layer, and one output layer. Each layer has
neurons. The output of a neuron in the input layer connects to the
neurons' inputs in the hidden layer and the output of a neuron in the
hidden layer connects to the neurons' inputs in the output layer. There
are no connections among neurons within each layer.

We assume the network trains a series of N samples
x t i N{ , }, = 1, 2,…,i i , where x ∈i

d is a d-dimensional real-valued
input signal and t ∈i

m is an m-dimensional real-valued signal that
is the desired output signal for the input signal. The output of ELM,
denoted by y ∈i

m , is given as

∑y x w βf b i N= ( , , ) , = 1,…, ,i
j

L

i j j j
=1 (1)

where w ∈j
d is a set of connection weights between the j-th neuron in

the hidden layer and each neuron in the input layer, bj is the bias for j-
th neuron in hidden layer, and β β β β= [ , ,…, ]j j j jm1 2

T is a set of
connection weights between the j-th neuron in the hidden layer and
each neuron in the output layer. The function f (·) denotes a nonlinear
activation function for neurons in the hidden layer, such as a sigmoidal
function given by
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f b
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1 + exp(− · + )

.
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Namely, the output of ELM is a weighted sum of L non-linear mapping
for the weighted input signals. A network with desired input-output
relations according to training samples can be obtained by appro-
priately configuring connection weights.

A learning algorithm for ELM, i.e., a scheme for setting connection
weights, is described. The connection weights w and the biases b in
ELM are determined by uniform random values at the first stage and
never changed, thus the learning is accomplished by setting the values
in β to produce desired output signals. This can be formulated by
solving the following least squares norm minimization problem:
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and ∥·∥ denotes the Frobenius norm. The problem in Eq. (3) is convex
and thus the optimal solution B is given by

B H T= ,† (6)

where H† indicates the Moore-Penrose pseudo inverse matrix of H .
There are several methods to calculate B , such as orthogonal projection
method and singular value decomposition. In this paper, we employ a
closed-form solution which is defined as follows:

⎧⎨⎩B H HH T
H H H T
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.
T T −1

T −1 T (7)

When an ELM is used for classification problems, it is necessary to
encode classes as desired output signals with respect to input signals.
In this paper, m neurons are prepared in the output layer for a
multiclass classification problem with m classes. In the case of the
input signal xi that belongs to the class k m∈ {1,…, }i , the encoded
desired output signal ti is given as

⎧⎨⎩t t t t
j k
j k

= ( ,…, ) , =
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i

i
1

T
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From the inputs and their corresponding desired output signals, the
network can be trained. Also, it is necessary to determine the class from
the neurons' outputs in the output layer after training. In this paper, a
predicted class from an input xi is given as

x yClass for = argmax ,i
j m

ij
=1, …, (9)

where yij denotes an output signal of the j-th neuron in the output
layer.
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