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a b s t r a c t

Quaternion algebra is a four-dimensional extension of the complex number field. The construction of
artificial neural networks using complex numbers has recently been extended to that using quaternions.
However, there have been few theoretical results for quaternionic neural networks. In the present work,
we prove the applicability of the uniqueness theorem to quaternionic neural networks. Uniqueness
theorems are important theories related to the singularities of neural networks. We provide the qua-
ternionic versions of several important ideas, such as reducibility and equivalence, for proof of the un-
iqueness theorem. We can determine all the irreducible quaternionic neural networks that are I/O-
equivalent to a given irreducible quaternionic neural network due to the uniqueness theorem.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quaternion algebra is a four-dimensional extension of the
complex number field. The use of complex numbers to represent
neural networks has recently been extended to quaternions [1–4].
For example, several models of quaternionic Hopfield neural net-
works have been proposed. Isokawa et al. proposed quaternionic
Hopfield neural networks with a split activation function [5].
Moreover, they extended the use of quaternions to neural net-
works with multistate activation function [6]. Kobayashi proposed
hybrid quaternion Hopfield neural networks utilizing the non-
commutativity property of quaternions and improved the noise
tolerance [7]. Nitta applied a single quaternionic neuron to a 4-bit
parity problem [8]. Moreover, quaternions have been utilized in
signal processing [9–11].

Several quaternionic feed-forward neural networks have also
been proposed and widely applied. Nitta proposed three-layered
quaternionic neural networks and showed that their learning
speed was faster than that of real-valued neural networks by
computer simulations [12]. Kobayashi and Nakajima proposed
quaternionic neural networks utilizing the non-commutativity
property of quaternions and improved the learning speed [13].
Kobayashi et al. provided a matrix representation of quaternionic
neural networks [14]. Matsui et al. applied quaternionic neural
networks to various field, such as color-image compression,
counting pedestrians and night-vision [15–17]. Shang and Hirose
applied quaternionic neural networks to land classification [18].
Arena et al. applied three-dimensional models of quaternionic
neural networks to control in robotics [4]. Although many ap-
plications of quaternionic neural networks have been studied,
there have been few theoretical results on quaternionic neural
networks [19].

Sussmann proved the uniqueness theorem for real-valued
feedforward neural networks. His theory has been tightly related
to singularities of neural networks. Singularity is an important
problem, because it causes stagnation in the learning process.
Nitta extended limited versions of the uniqueness theorem to
complex-valued neural networks [21–24]. Kobayashi found ex-
ceptional reducibility of complex-valued neural networks and
proved the full version of the uniqueness theorem for complex-
valued neural networks [25]. Kobayashi also proved a limited
version of the uniqueness theorem for complex-valued neural
networks represented in polar variables [26]. Fukumizu and Amari
showed the relations between singularity and stagnation in the
learning process based on the uniqueness theorem [27]. Nitta
extended their theory to complex-valued neural networks [28].
Nitta also studied the singularity of a single complex-valued
neuron with polar variables [29]. Satoh and Nakano improved the
learning process using singular regions [30–32]. In the present
work, we prove a limited version of the uniqueness theorem for
quaternionic neural networks. To prove the uniqueness theorem,
we define the quaternionic versions of some necessary concepts,
such as reducibility and equivalence. They are important ideas
related to singularity. Since quaternions are much more compli-
cated than real and complex numbers, the proof of the uniqueness
theorem for quaternionic neural networks is more difficult than
those for real-valued and complex-valued neural networks.

The rest of this paper is organized as follows. Section 2 de-
scribes the real-valued version of the present work. Section 3
prepares the necessary ideas for quaternionic neural networks. In
Section 4, we prove the uniqueness theorem for quaternionic
neural networks. We finish with conclusions in Section 5.
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2. Real-valued neural networks

In this section, we briefly describe real-valued neural networks.
In this work, only three-layered feedforward neural networks with
one output neuron will be considered. We also suppose that hid-
den neurons do not have bias terms. The number of input neurons
is fixed to m. We denote the connection weight from input neuron
b to hidden neuron a as wab. Let = ( … )w w ww , , ,a a a am1 2 and

= ( … )x x xx , , , m1 2 be the connection weight vector to hidden
neuron a and an input vector, respectively. The vector

= ( … )w w ww , , ,a a a am1 2 is referred to as the connection weight
vector to neuron a. Then, the weighted sum input ν ( )xa to hidden
neuron a is defined as follows:

∑ν ( ) = · =
( )=

w xx w x .
1

a a
b

m

ab b
1

The activation function of hidden neurons is (·)tanh . For the input
vector x , the output of hidden neuron a is ν( ( ))xtanh a . Let ca be the
connection weight from hidden neuron a to the output neuron. In
addition, let c0 be the bias term of the output neuron. The output
μ ( )x of the output neuron is given as follows:

∑μ ν( ) = + ( ( ))
( )=

c cx xtanh ,
2a

n

a a0
1

where n is the number of hidden neurons.
We define several important concepts for the uniqueness

theorem.

Definition 1. If two neural networks have the same I/O map, then
they are said to be I/O-equivalent.

Definition 2. If a neural network is not I/O-equivalent to any
neural networks having fewer hidden neurons, the neural network
is said to be minimal.

The above definitions are not limited to real-valued neural
networks.

We consider two non-zero vectors = ( … )g g gg , , ,a a a am1 2

( = )a 1, 2 and two linear functions ( ) = · = ∑ =g g xx g xa a b
m

ab b1 with
m variables.

Definition 3. If = ±g g1 2, then two linear functions ( )g x1 and ( )g x2
are said to be sign-equivalent.

We define reducibility and irreducibility for real-valued neural
networks. Later, these definitions will be extended to quaternionic
versions.

Definition 4. If a neural network satisfies one of the following
conditions, it is said to be reducible.

1. There exists ca such that ca¼0 and >a 0.
2. There exists wa such that =w 0a .
3. There exist ≠ ^a a such that = ± ^w wa a.

The third condition implies that two linear functions ·w xa and
·^w xa are sign-equivalent.

Definition 5. If a neural network is not reducible, then it is said to
be irreducible.

Proposition 1. A reducible neural network is not minimal.

Proof. In the case of ca¼0 or =w 0a , the neural network without
hidden neuron a is I/O-equivalent to the original one. Suppose

ρ=^w wa a and ρ = ± 1, then the following equality holds:

ρ( · ) + ( · ) = ( · ) + ( · ) ( )^ ^ ^c c c cw x w x w x w xtanh tanh tanh tanh 3a a a aa a a a

ρ( · ) + ( · ) = ( · ) + ( · ) ( )^ ^ ^c c c cw x w x w x w xtanh tanh tanh tanh 4a a a aa a a a

ρ( · ) + ( · ) = ( + ) ( · ) ( )^ ^ ^c c c cw x w x w xtanh tanh tanh . 5a a a aa a a

We obtain an I/O-equivalent neural network with fewer hidden
neurons by eliminating hidden neuron â and replacing ca by

ρ+ ^c ca a. Therefore, a reducible neural network is not minimal.□

The inverse of Proposition 1 is also true [20].

Theorem 1. A neural network is minimal if and only if it is
irreducible.

The following helpful lemma was proven by Sussmann [20].

Lemma 1. Consider non-constant linear functions, ν ν( ) ( )x x, ,1 2

ν… ( )x, n . If no two of them are sign-equivalent, then ( )ν ( )xtanh 1 ,
( ) ( )ν ν( ) … ( )x xtanh , , tanh n2 and the constant function 1 are linearly

independent of R .

Moreover, Sussmann proved the uniqueness theorem for real-va-
lued neural networks. The following definition is necessary for the
description of the uniqueness theorem.

Definition 6. We define the following translations of the neural
networks with n hidden neurons.

1. Select < ≤a n0 and replace ca and wa by −ca and −wa, re-
spectively. We denote this translation as ga.

2. Exchange two different hidden neurons a and â. We denote this
translation as ^gaa.

These translations maintain the I/O map. We denote the finite
group generated by { }⋃{ }^g ga aa as GR. The order of GR is !n2n . For

∈g Gr and a neural network N with n hidden neurons, N and g(N)
are I/O-equivalent.

Definition 7. For two neural networks N1 and N2 with n hidden
neurons, if there exists ∈g GR such that = ( )N g N1 2 , N1 and N2 are
said to be equivalent.

The following theorem is referred to as the uniqueness theorem.

Theorem 2. Let N1 and N2 be irreducible neural networks with n1
and n2 hidden neurons, respectively. If they are I/O-equivalent, they
are equivalent and =n n1 2 holds.

The above-described uniqueness theorem is a limited version
of the uniqueness theorem proven by Sussmann. Theorem 1 was
obtained as a corollary of Theorem 2. Nitta proved the complex-
valued version of Theorem 2 [22]. The full version proof was very
complicated, because there existed exceptional reducibility, which
is irreducible but not minimal [25]. In the present work, we prove
the quaternionic version of Theorem 2.

3. Quaternionic neural networks

3.1. Quaternion

Quaternions form a non-commutative field and are extensions
of complex numbers. Quaternions have three imaginary units i, j
and k, defined as follows:

= = = − ( )i j k 1, 62 2 2

= − = ( )ij ji k, 7
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