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A B S T R A C T

The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue decomposition (EVD) to
polynomial matrices. The purpose of this article is to provide a review of the theoretical foundations of the
PEVD and to highlight practical applications in the area of broadband blind source separation (BSS). Based on
basic definitions of polynomial matrix terminology such as parahermitian and paraunitary matrices, strong
decorrelation and spectral majorisation, the PEVD and its theoretical foundations will be briefly outlined. The
paper then focuses on the applicability of the PEVD and broadband subspace techniques — enabled by the
diagonalisation and spectral majorisation capabilities of PEVD algorithms — to define broadband BSS solutions
that generalise well-known narrowband techniques based on the EVD. This is achieved through the analysis of
new results from three exemplar broadband BSS applications — underwater acoustics, radar clutter
suppression, and domain-weighted broadband beamforming — and their comparison with classical broadband
methods.

1. Introduction

Over the last decade, algorithms that extend the eigenvalue
decomposition (EVD) to the realm of polynomial matrices have had a
growing impact on signal processing theory and practice, mainly
because they can be used to solve generalisations of narrowband
problems typically addressed by the EVD, including subspace decom-
position. The extension of EVD to parahermitian (PH) polynomial
matrices, referred to as polynomial matrix EVD (PEVD), gives an
immediate broadband generalisation of the concepts of signal and
noise subspaces, and hence subspace decompositions. Just as principal
component analysis (PCA) based on the EVD is fundamental to most
narrowband BSS formulations, the PEVD can be a powerful tool for
broadband or convolutive blind source separation (BSS).

The classical approach to narrowband BSS begins by exploiting
second-order statistics to generate uncorrelated sequences from nar-
rowband, instantaneously mixed signals by performing principal
component analysis (PCA) [1,2]. PCA is usually obtained through
matrix factorisation by means of a unitary matrix decomposition, such
as the singular value (SVD) or eigenvalue decomposition (EVD) [3,4].
To complete the BSS process, a “hidden” rotation matrix is determined
via on higher-order statistics (HOS), which permutes entries to achieve

spectral coherence across frequency bins. With little or no prior
knowledge and minimal assumptions, a BSS method can often be used
to extract a wanted signal from among interference signals. However,
the wanted signal is in no way accentuated by these underlying
assumptions.

Incorporation of a priori knowledge of the signals into the BSS
problem can be formulated in the framework of signal decompositions
and matrix factorisations, and address statistical dependence, periodi-
city, spectral shape, time coherence or smoothness [5–8]. The goal
often is to estimate a reduced coordinate space, which provides a more
accurate physical representation of the sources or mixing parameters.

The above signal decompositions are based on an instantaneous
mixing model, where the propagation of signals from sources to the
array is modelled as a scalar mixing matrix. However, in many
important applications such as broadband array processing, convolu-
tive mixing — or a matrix of finite impulse response (FIR) filters —
must be used instead. The transfer function of such a matrix of FIR
filters forms a polynomial matrix, which can accurately model effects
such as multipath propagation, or the lag-dependent correlation
between different broadband sensor signals. SVD- or EVD-based
decompositions generally can only decorrelate instantaneously, i.e.,
only for zero lag. Following convolutive mixing, strong decorrelation
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[9] eliminates correlation for all lag values, and can be achieved using a
well-designed matrix of FIR filters.

In the past, broadband BSS has been addressed by performing
narrowband BSS at each frequency bin simultaneously, through
application of the discrete Fourier transform (DFT) — commonly
referred to as independent frequency bin (IFB) processing. However,
coherence restoration is required after BSS via permutation matrices
applied in every bin [10,11]. An alternative is to adopt coherent signal
subspace-related methods, which generally require some prior knowl-
edge of signals, such as direction and fractional bandwidth, to
coherently combine covariance matrices across different bins in order
to create an approximately narrowband problem [12–14].

The formulation and decomposition of polynomial matrices pre-
sents an alternative to these classical broadband BSS approaches.
Polynomial matrices have been used for many years, e.g., in the area of
control [15] or broadband subspace decomposition and adaptive
sensor arrays [16–18]. Various polynomial matrix factorisations have
been addressed, such as the Smith–Macmillan form [19], or poly-
nomial matrix factors that are paraunitary (PU) or lossless [20–33].
Typically, the filter is chosen to optimise a specific objective function
for a known input power spectral density (PSD), such as coding gain
[9,20,23,31,32] for subband coding.

The space–time covariance matrix derived from broadband sensor
data includes auto- and cross-correlation terms, whose symmetries
create the specific form of a parahermitian (PH) polynomial matrix.
The PEVD of such a PH matrix was proposed in [16,25,26], and leads
to a factorisation where a diagonal PH matrix containing the poly-
nomial eigenvalues is pre- and post-multiplied by a PU matrix, or
lossless, filter bank. The existence of such a factorisation based on FIR
PU matrices is not ascertained [19], but suggested that it exists at least
in good approximation [34].

The polynomial eigenvalues of a PEVD represent the power spectral
densities of the strongly decorrelated signals. Depending on the PEVD
algorithm (discussed below), the eigenvalues can be ordered akin to the
singular values of the SVD at every frequency. The ordering of the
spectra in this way is called spectral majorisation [9,26], and is useful
in a number of applications.

An initial iterative scheme to approximate the PEVD, the second
order sequential best rotation (SBR2) algorithm [26], has triggered
similar or related efforts [28–33,35–40]. SBR2 has been proven to
converge [26,31], and found to approximate the ideal PEVD very
closely [34]. A coding-gain based version of SBR2 (SBR2C) was shown
to offer improved convergence in [31].

More recently, the sequential matrix decomposition (SMD) and
maximum-element (ME-SMD) algorithms [33] have shown superior
convergence due to their advanced energy transfer ability, as compared
to other iterative algorithms. The multiple-shift variant of the ME-SMD
in [36] has shown marked improvement in convergence speed com-
pared to SMD.

The SMD and SBR2 algorithms have been successfully applied to a
number of broadband extensions of narrowband problems, tradition-
ally addressed by the EVD, including, e.g., broadband array processing
[41–47], channel coding [48], broadband communications [49], spec-
tral factorisation [50], convolutive BSS [42,46], and the design of FIR
PU filter banks for subband coding [31,32]. The recent parallelisation
of SBR2 in [35], for field programmable gate arrays, has enabled
application of SBR2 to real-time problems using embedded processing
[51].

The advantage of polynomial matrix decompositions over IFB
processing lies in the natural ability of broadband decomposition
algorithms to preserve and exploit the coherence of signals.

As a particular example of applying the PEVD to convolutive BSS
with prior knowledge, in [42] a broadband extension to the narrow-
band semi-blind signal approach in [52] has been performed. The
broadband equivalent method used some prior information about the
direction of sources acquired by a broadband array was embedded to

achieve an enhanced separation of sources. This can be combined with
other broadband approaches, such as polynomial MUSIC [44,45], to
estimate the prior knowledge that can then be passed to the BSS
problem.

The aim of this paper is twofold: (i) provide an overview of
polynomial matrix factorisation and (ii) discuss applications in the
area of broadband BSS. In Section 2, the PEVD and related funda-
mental concepts, such as paraunitarity, strong decorrelation and
spectral majorisation, are introduced. In Sections 3 and 4, we present
solutions and new results to three important problems via a PEVD-
based broadband beamformer and domain-weighted PEVD. The re-
sults are compared to classical methods, which contrast the natural
ability of broadband subspace decomposition algorithms to preserve
and exploit the coherence of signals. Lastly, conclusions are drawn in
Section 5.

2. Polynomial matrix eigenvalue decomposition

2.1. Notation

In this paper matrices and vectors are represented by bold upper-
case and bold lowercase characters, e.g., X and x, respectively. An
element of X is denoted by xjk. Complex conjugation, matrix transposi-
tion and Hermitian transposition are indicated by the superscripts *, T
and H, respectively. A p p× (complex-valued) Hermitian matrix

R ∈ p p× has the property R R= H; a unitary matrix U ∈ p p× has the
property U U UU I= = p

H H , where Ip is the p p× identity matrix.
Polynomial matrices are polynomials with matrix-valued coeffi-

cients, or matrices with polynomial elements [15,19]. An n q× poly-
nomial matrix in the indeterminate variable z−1 is denoted by

∑A z τ zA( ) = [ ] ,
τ t

t
τ

=

−

1

2

(1)

where a z a τ z( ) = ∑ [ ]ij τ t
t

ij
τ

=
−

1
2 , t t≤1 2, τ ∈ and a τ[ ] ∈ij , is an element

of τA[ ]. Hence, coefficient matrices of A z( ) can be written as
t tA A[ ],…, [ ]1 2 ; e.g., the coefficient matrix of lag zero (lag-zero coefficient

matrix) is denoted A[0]. Note that the effective order of A z( ) is t t−2 1. A
transform pair as in (1) is abbreviated as A z τA( ) •—∘ [ ]. Also note that
parentheses express dependency on continuous variables, while square
brackets denote dependency on discrete variables.

2.2. Space–time covariance matrix

It is well-known that instantaneous spatial correlation, i.e., correla-
tion between pairs of signals sampled at the same instant in time, can
be removed using the EVD and SVD [4]. Therefore, the SVD (or EVD)
can be used to decorrelate instantaneous mixtures, e.g., for the case of
narrowband sensor arrays. However, convolutively mixed signals, or
signals derived from a broadband sensor array, cannot be decorrelated
in this way. The sensor-weight values required to correct for the time
delay between sensors are different for different frequencies. Frequency
dependent weights can be realised using FIR filters, which form a
frequency dependent response for each sensor signal in order to
compensate the phase difference for the different frequency compo-
nents. The sensors thus sample the propagating wave field in both
space and time.

Hence, in order to express the signals at the sensors, we modify the
well-known instantaneous-mixing (or narrowband) model to take
account of this process

ηt t t tx A s[ ] = [ ]* [ ] + [ ], (2)

where the asterisk denotes multi-input multi-output (MIMO) convolu-
tion [51], Aτ zA[ ]∘—• ( ) is the p q× mixing matrix of FIR filters a t[ ]ij

and ts[ ] ∈ q and η t[ ] represent independent source and noise signals.
The signals tx[ ] will generally be correlated over multiple time lags,
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