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A B S T R A C T

This paper is concerned with the filter design for Markov jump systems with incomplete transition probabilities
subject to sensor nonlinearities. Moreover, the frequency of disturbance ranges in a finite interval. To set up a
solvable solution to cast the filter parameters, nonlinearities induced by unknown transition probabilities are
coped with the transition probability property and the S-procedure is adopted to handle sensor nonlinearities.
With these strategies, sufficient conditions for the filtering error systems to be stochastically stable with the
required finite frequency performance are established firstly. Then, a finite frequency filter design method is
proposed in terms of linear matrix inequalities. The proposed finite frequency filter method covers the full
frequency as a special case. Its effectiveness is verified by a numerical example.

1. Introduction

Markov jump systems belong to the category of stochastically
hybrid systems and have been widely employed to model dynamic
systems caused by random abrupt variations. Applications of this kind
of system can be found in the area of manufacture systems, economical
systems and network control systems. In terms of its theoretical
research, fruitful results have been reported in the literature on
stability analysis and stabilization, slide mode control, fault detection,
adaptive control and so on [1–15]. Since transition probabilities
dominate the transition among subsystems, they are presumed to be
known in advance.

Recently, much attention has been devoted to the study of Markov
jump systems with incomplete transition probabilities. The reason is
that the accurate transition probabilities for practical systems may be
hard or costly to be acquired [16]. To be consistent with the engineer-
ing requirements, uncertain transition probabilities are characterized
by the norm-bounded or polytopic structure [17,18]. Consequently,
robust control methodologies are convenient to dispose of them. In
contrast to uncertain transition probabilities with known structure,
they are permitted to be known or unknown in [19]. In this scenario,
one main issue is how to linearize nonlinearity induced by unknown
transition probabilities. To get less conservative results, the free
weighting matrix technique is applied to make full use of known

transition probabilities [20]. Taking into account of known and
uncertain transition probabilities, H∞ static output feedback control
of Markov jump linear uncertain systems is discussed in [21].
Alternatively, in [22], uncertain transition probabilities are approxi-
mated by Gaussian probability density.

On another research front line, state estimation or filtering of
Markov jump system has primary importance in the field of signal
processing and communication [23]. Among various existing ap-
proaches, the H∞ filtering has been favored by many researchers
[24–27]. It is noted that sensor outputs in these results are linear.
Unfortunately, nonlinear outputs may be measured due to harsh
environments and finite register-length of sensors [28,29]. Collecting
these factors, a delay-dependent H∞ filtering approach for Markov
jump systems with sensor nonlinearities is developed in [28]. An
asynchronous l l−2 ∞ filter for Markov jumping systems with randomly
sensor nonlinearities is addressed in [29]. It is to note that these results
are built on the full frequency domain. Unfortunately, the frequency
ranges of exogenous disturbances may be known beforehand [30].
Taking a vehicle suspension system as an example, the main control
task for this system is to attenuate the vertical vibrations of 4–8 Hz
which is sensitive to human body. To ensure the comfortability, it is
desired to alleviate the effect of these finite frequency vibrations. If the
accessible frequency information is not used, the resulting design
method could be conservative [30–33]. Up to now, due to the technical

http://dx.doi.org/10.1016/j.sigpro.2016.11.010
Received 29 July 2016; Received in revised form 23 October 2016; Accepted 11 November 2016

⁎ Corresponding author at: College of Electrical Engineering and Control Science, Nanjing Technology University, Nanjing 211816, China.
E-mail addresses: mouquanshen@gmail.com (M. Shen), yedan@ise.neu.edu.cn (D. Ye), wangq@uj.ac.za (Q.-G. Wang).

Signal Processing 134 (2017) 1–8

0165-1684/ © 2016 Elsevier B.V. All rights reserved.
Available online 16 November 2016

crossmark

http://www.sciencedirect.com/science/journal/01651684
http://www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.11.010
http://dx.doi.org/10.1016/j.sigpro.2016.11.010
http://dx.doi.org/10.1016/j.sigpro.2016.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.11.010&domain=pdf


difficulty, there is no corresponding filtering result for Markov jump
system with incomplete transition probabilities and sensor nonlinea-
rities.

Excited by the above observations, this paper is dedicated to the
mode-dependent filter design for Markov jump systems with sensor
nonlinearities in finite frequency range. Transition probabilities are
known, uncertain with known bounds and unknown, and nonlinear
sensor outputs are expressed by the sector bounded form. Effective
measurements are exploited to settle sensor nonlinearities and non-
linearities induced by unknown transition probabilities. According to
these measurements, a finite frequency method for the filtering error
systems to be stochastically stable with the prescribed performance is
explored. Based on the proposed approach, an unified filter design
framework is constructed in terms of linear matrix inequalities. It is
shown that the finite frequency method may be less conservative than
that of the full frequency. The validity of the proposed method is
demonstrated by a numerical example.

The organization of this article is given as follows. The problem
statement and some preliminaries are introduced in Section 2. Three
theorems are put in Section 3. A numerical example is given to
illustrate the effectiveness of the proposed approach in Section 4.
Lastly, Section 5 concludes the paper.

Notation: Throughout the paper, Y > 0( < 0) means its positive
(negative) definite. n indicates the n-dimensional Euclidean space and
n m× is the set of all n m× real matrices. 2 denotes the square
integrable vector functions over [0, ∞) with norm

∫x x t x t dt∥ ∥ = ( ) ( )T
2 0

∞
. The transposed M is MT. * stands for the

entries symmetry. The mathematical expectation is presented by . j is
an imaginary unite. X X( + )T is shorten as He(X). All matrices, if not
explicitly clarification, are assumed to have compatible dimensions.

2. Problem statement and preliminaries

Consider a continuous Markov jump system as

⎧
⎨
⎪⎪

⎩
⎪⎪

x t A r t x t B r t w t
y t C r t x t D r t w t
z t C r t x t D r t w t
y t ϕ y t

˙ ( ) = ( ( )) ( ) + ( ( )) ( )
( ) = ( ( )) ( ) + ( ( )) ( )
( ) = ( ( )) ( ) + ( ( )) ( )
( ) = ( ( ))s

1 1

2 2

(1)

where x t( ) ∈ n, z t( ) ∈ r , y t( ) ∈s
m and w t( ) ∈ q are the state

vector, regulated output, sensor output and energy bounded distur-
bances with limited frequency ranges respectively. A r t( ( )) ∈ n n× ,

B r t( ( )) ∈ n q× , C r t( ( )) ∈ m n
1

× , D r t( ( )) ∈ m q
1

× , C r t( ( )) ∈ r n
2

× and
D r t( ( )) ∈ r q

2
× are system matrices with approximate dimension. ϕ (•)

is a vector-valued nonlinear function. r t t( )( ≥ 0) is a continuous
Markov processes and takes values in a set N= {1, 2,…, }.

The transition from mode i to mode l of r(t) satisfies

⎧⎨⎩Pr r t h l r t i
π h o h if l i

π h o h if l i
( ( + ) = | ( ) = ) =

+ ( ), ≠
1 + + ( ), =

il

ii

where h > 0 and lim = 0h
o h

h→0
( ) , π i l l i≥ 0( , ∈ , ≠ )il and

π π= − ∑ii l i
N

il≠ .
Since it is costly to exactly sample the transitions among different

modes, there are inevitable to be incomplete [19,21]. Consequently,
transition probabilities are allowed to be known, uncertain and
unknown as follows
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⎤
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where ? means that the corresponding elements are inaccessible and αil
denotes uncertain with known lower and upper bounds α α( , )il il . To
distinguish the accessibility of all transition probabilities, k

i and uk
i

are defined as follows,

l π is known or uncertain l l π is unknown l= { | , ∈ } = { | , ∈ }k
i

il uk
i

il

(3)

Before proceeding further, an assumption borrowed from [34,35] is
given below:

Assumption 1. The vector-valued nonlinear function ϕ (•) satisfying
the following sector condition

ϕ K ϕ K( (ϑ) − ϑ) ( (ϑ) − ϑ) ≤ 0,T
1 2

where ϑ is a vector, K1 and K2 are diagonal real matrices.
Without loss of generality, it is assumed that K K>2 1. Then

K K K= −2 1 is a positive-definite matrix. Therefore, y(t) is decomposed
to a linear and a nonlinear parts as below [28,29]

y t K y t ϕ y t( ) = ( ) + ( ( )),s s1 (4)

with

ϕ y t ϕ y t Ky t( ( ))( ( ( )) − ( )) ≤ 0.s
T

s (5)

As mentioned in the Introduction, all possible frequency ranges are
described by the following set [30]

Θ ϖ τ ϖ ϖ ϖ ϖ≔{ ∈ | ( − )( − ) ≤ 0}ϖ 1 2 (6)

where τ = ± 1, ϖ1 and ϖ2 are known real scalars, and ϖ is frequency
variable.

Remark 1. The proposed finite frequency range covers low, middle
and high frequencies by choosing different combinations of τ and ϖ1

and ϖ2. To be specific, let ϖ ϖ= −1 2 and τ = 1, then one has the low
frequency conditions. The middle case are attained by selecting τ = 1
and ϖ ϖ≠1 2. To get the high case, set ϖ ϖ= −1 2 and τ = −1.

To ease presentation, if r t i( ) = , A r t( ( )), B r t( ( )), C r t( ( ))1 , D r t( ( ))1 ,
C r t( ( ))2 and D r t( ( ))2 are simplified as Ai, Bi, C1i, D1i, C2i and D2i.

In this paper, the following full order filter is designed

⎧⎨⎩
x t A x t B y t
z t C x t D y t
˙ ( ) = ( ) + ( )

( ) = ( ) + ( )
f fi f fi

f fi f fi (7)

where x t( ) ∈f
n is filter state, z t( ) ∈f

r is estimated output, Afi, Bfi,
Cfi and Dfi are filter parameters to be designed.

Combining (1), (4), (5) and (7), the augmented filtering error
system is
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Prior to addressing the considered filtering problem, inspired by
[30,31], the definition on finite frequency performance index γ is given
below at first

Definition 1. The filtering error system (8) has a finite frequency
disturbance attenuation performance γ if, under zero initial condition,
the inequalitiy

 
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭∫ ∫e t e t dt γ w t w t dt( ) ( ) ≤ ( ) ( ) ,T T
0

∞
2

0

∞

(9)

holds for (8) with w t( ) ∈ 2 satisfying


⎧⎨⎩

⎫⎬⎭∫ τ ϖ x t jx t ϖ x t jx t dt( ( ) + ˙ ( ))( ( ) + ˙ ( )) ≤ 0.T
0

∞
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(10)
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