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A B S T R A C T

We present a design of a new class of compactly supported antisymmetric biorthogonal wavelet filter banks
which have the analysis as well as the synthesis filters of even-length. Here, the analysis and the synthesis filters
are designed to have minimum joint duration-bandwidth localization (JDBL). The design of filters has been
formulated as a direct time-domain linearly constrained eigenvalue problem that does not involve any
parametrization and iterations. The optimal analysis and synthesis filters have been obtained as the eigenvectors
of the positive definite matrices. The closed form analytic expression for the objective function has been
presented. The perfect reconstruction and regularity conditions have been incorporated in the design by
employing time-domain matrix characterization. The method can control duration and bandwidth localizations
of the analysis and synthesis filters, independently. A few design examples have been presented and compared
with previous works. The performance of the optimal filter banks designed by employing the proposed method
has been evaluated in image coding and signal denoising applications.

1. Introduction

Wavelet filter banks (FBs) are deployed in many applications of
signal processing and communications. The design of wavelet FBs can
be reduced to a constrained optimization problem wherein the perfect
reconstruction (PR) and regularity constraints are imposed, and a
desired objective such as compaction energy, stopband energy, fre-
quency selectivity, roll off factor, ripples and joint duration-bandwidth
localization (JDBL) of the filters is optimized [1–3]. The selection of
optimality criterion depends upon the application.

The JDBL of filters plays a pivotal role in certain applications of
signal processing and communications. Wilson and Granlund [4]
observe that JDBL optimized filters perform well in image segmenta-
tion, feature extraction, edge detection, and image compression. Monro
et al. [5] and Morris et al. [6] demonstrate that JDBL optimized
orthogonal wavelet FBs perform better than other FBs in image coding
applications. Davidson et al. [7] find that the JDBL optimized FBs
outperform other filters in pulse shaping system to mitigate inter
symbol interference (ISI). Dandach and Siohan [8] observe an excellent
performance of JDBL optimized FBs in reducing ISI and inter-channel
interference in orthogonal frequency division multiplexing (OFDM)
multicarrier systems. The minimum bandwidth orthogonal wavelet FBs

perform well in some applications such as image compression [9] and
denoising of electrocardiogram (ECG) signal [10]. Thus, the JDBL is an
important attribute in selecting FBs.

It has been observed that in certain applications even-length
wavelet FBs perform better than odd-length FBs. Villasenor et al.
[11] find that even-length wavelet FBs perform better in image coding
applications. Villasenor et al. [11] find that the even-length FBs have
more shift-invariance than the odd-length FBs. Kronander [12] finds
that the even-length FBs perform better than the odd-length FBs in
video coding to reduce flicker noise. Further, in the design of dual-tree
complex wavelet transform [13], even-length FBs are required, as the
FBs provide half-sample delay. The central distinctive feature between
odd and even-length FBs is that the former generates symmetric
wavelets while the latter yields antisymmetric wavelets.

Tay [14,15] and Muthuvel and Makur [16] design even-length
biorthogonal FBs in which the filters have minimum ripple energies in
pass band and stop band. However, the authors do not consider JDBL
as an optimality criterion. Recently, the design of JDBL optimized
windows has received a lot of attention [17,18]. Morris and his
collaborators [6,19,10,20] and Monro et al. [5] design JDBL optimized
orthogonal FBs, and evaluate the performance of their FBs in several
applications. However, they do not consider the design of JDBL
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optimized biorthogonal FBs. Tay [21] designs a class of JDBL
optimized biorthogonal FBs called half band pair filter bank using
parametric Bernstein polynomial. However, the filters of this class
always have an odd length. Moreover, the design method is highly
restrictive. In the previous works, Sharma et al. [22,23] design a
general class of odd length biorthogonal JDBL optimized symmetric
wavelet FBs where all filters are Type-I linear phase filters. However,
the authors do not present a design for antisymmetric biorthogonal
wavelet FBs (ABWFBs). In this work, we introduce a design of JDBL
optimized even-length ABWFBs where the filters are Type-II linear
phase filters. The method presented here is a direct time-domain
approach that does not involve any parametrization unlike the methods
of Tay [14,21]. Our design provides globally optimal solutions. The
method is non-iterative where the optimal filter is obtained as an
eigenvector of the positive definite matrix. The closed form expressions
for the objective function and constraints are given. The performance
of the optimal FBs designed by us has been evaluated in image coding
and signal denoising applications.

The rest of the paper is organized as follows: The background
related with the proposed work is given in Section 2. In Section 3, we
formulate the filter design problem as a constrained optimization
problem. The derived closed form expressions for objective function
and constraints are also given here. Section 4 presents the method to
obtain optimal FBs. In Section 5, we present some design examples to
demonstrate the effectiveness and flexibility of the proposed method.
The section also presents application of the optimal FBs in image
compression and denoising. Conclusion and future directions are given
in Section 6. The main notations used in this paper are listed in Table 1.

2. Background

In this paper, we consider the design of even-length, two-channel
linear phase PR FBs which are known as Type-A FBs. Let H z( )0 and
F z( )0 be the analysis lowpass filter (ALF) and synthesis lowpass filter
(SLF) of the FB with even-lengths L N= 2A and L M= 2S , respectively.
Throughout the paper, the subscripts A and S stand for analysis and
synthesis, respectively. The FB satisfies the PR condition if [24]

F z H z F z H z( ) ( ) + (− ) (− ) = 20 0 0 0 (1)

Defining the product filter M z F z H z( ) = ( ) ( )0 0 , the above PR condition
(1) can be rewritten as

M z M z( ) + (− ) = 2 (2)

In time-domain the PR condition can be written as

∑m k f n h n k δ k(2 ) = ( ) ( − 2 ) = ( )
n

0 0
(3)

where m(k) is the impulse response of the product filter M(z) with
normalization m (0) = 1. The highpass filters H z( )1 and F z( )1 can be
obtained from quadrature conjugation of respective lowpass filters.

3. Problem formulation

Consider a Type-II, linear phase, real-valued, finite impulse re-
sponse (FIR) filter with length L N= 2 , which is represented by its
impulse response, h(n), n L0 ≤ ≤ − 1. The frequency response of the
filter can be given by, H e e H e( ) = ( )͠jω jω L jω( ( −1)/2) , where the amplitude
response H e( )͠ jω is real valued. The amplitude response can be
expressed as H e ωb c( ) = ( )͠ jω T , where, the vectors b and ωc( ) have been
defined as
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The normalizing factor 2 is included to have unit energy filter h(n),
when the vector b is constrained to have unit norm.

3.1. Objective function

The mean-squared duration, σn
2, and mean-squared bandwidth, σω

2,
of a lowpass filter h(n) can be defined by [25],
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σn
2 and σω

2 will subsequently be called duration and bandwidth,
respectively. Here, E is the energy of the filter h(n) while ωH′( ) denotes
the derivative of ωH( ). If the energy of the filter is constrained to be

Table 1
Important notations.

Symbol Definition Symbol Definition

H z( )0 Analysis lowpass filter
(ALF)

J Objective function

F z( )0 Synthesis lowpass filter
(SLF)

γ Duration-bandwidth

H z( )1 Analysis highpass filter Trade-off factor
F z( )1 Synthesis highpass filter K Regularity index
M(z) Product filter D Mean duration matrix
m(k) Impulse response of

product filter
B Mean bandwidth matrix

Q Convex combination of matrices
B and D

LA Length of ALF
P PR matrix

LS Length of SLF h Coefficients of symmetric ALF

σn
2 Mean-squared duration f Coefficients of symmetric SLF

σω
2 Mean-squared bandwidth

V Regularity matrix

Table 2
Duration–bandwidth localization properties.

Filter → ALF SLF

FB ↓ σ σn ω
2 2 JDBL σ σn ω

2 2 JDBL

A-16/28 0.2668 0.4221 0.7700 1.0146
B-16/28 0.2613 0.4130 0.7411 0.9999
TFOOL-15/29 [22] 0.2716 0.4319 0.8012 1.0326
MMF-16/28 [24] 0.3430 – 1.4661 –

Fig. 1. Frequency response of filter pair [H's] for A–16/28, B–16/28, MMF–16/28 and
TFOOL–15/29. Solid line: B–16/28, dashed line: A–16/28, dotted line: MMF FB, dash-
dot line: TFOOL–15/29.
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