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A B S T R A C T

Proposed is a diffusion least mean square/fourth (LMS/F) algorithm, which is characterized by its fast
convergence and low steady-state misalignment for distributed estimation in non-Gaussian noise environments.
Instead of the conventional mean square error cost function, the diffusion LMS/F algorithm is derived from the
mixed square/fourth error cost function, which is more suitable for non-Gaussian noise environments.
Moreover, we incorporate the L1- and L0-norm constraints into the mixed square/fourth error cost function,
and then a class of diffusion sparse LMS/F algorithms is developed which is able to exploit the sparsity of the
considered system. Simulation results show that the diffusion LMS/F algorithm outperforms the conventional
diffusion LMS and LMF algorithms in non-Gaussian noise environments. The improvements of diffusion sparse
LMS/F algorithms in terms of steady-state misalignment are also demonstrated relative to the diffusion LMS/F
algorithm.

1. Introduction

To estimate some parameters of interest from the data collected at
nodes distributed over a geographic region, the distributed estimation
was introduced [1–6]. In the distributed estimation, every node in the
network communicates with a subset of the nodes, and the estimation
is performed at each node in the network. There are a couple of
distributed strategies that have been developed in the literature,
namely, the incremental [1,6] and diffusion [2–5] strategies.

The diffusion strategy uses the subset of neighbors to communicate,
and therefore requires low computational complexity and owns stable
behavior in real-time adaptation. The diffusion least mean square
(LMS) algorithm was first proposed in [2]. In [3], a general form of
diffusion LMS algorithms was presented in which the adapt-then-
combine (ATC) and combine-then-adapt (CTA) versions of diffusion
LMS algorithms were formulated. The diffusion sparse LMS algorithms
[4,5] were developed to enhance the detection of sparsity in the
underlying system model. As presented in [3], the diffusion LMS
algorithm is obtained based on the mean square error cost function. As
is well-known, mean square error-based adaptive algorithms achieve
optimal performance when the measurement noise is Gaussian.
Besides, these mean square error-based adaptive algorithms show the
same behavior for all noise distributions, since their performance
depends only on the noise variance [7–9], which can also be seen
from Fig. 3 in Section 5.1.

Research has shown that the adaptive algorithms based on high-
order moment error cost function, e.g., least mean fourth (LMF)

algorithm [7], performance better than the mean square error-based
adaptive algorithms in some non-Gaussian noise environments, such
as uniform or binary noise. However, the LMF algorithm has several
stability problems that may put a limitation to its use in applications
[8,9]. In addition, the LMF algorithm suffers from slow convergence in
high signal-to-noise (SNR) environment [10–12]. Recently, by com-
bining the benefit of the LMS and LMF algorithms, the least mean
square/fourth (LMS/F) algorithm has been developed based on the
mixed square/fourth error cost function [10–12]. The results showed
that the LMS/F algorithm performs better than the conventional LMS
and LMF algorithms. Motivated by the good performance of the LMS/F
algorithm for non-Gaussian noise environments, we develop a diffusion
LMS/F algorithm for distributed estimation in this work. In addition,
the diffusion L1-norm constraint LMS/F (L1-LMS/F), diffusion re-
weighted L1-norm constraint LMS/F (RL1-LMS/F) and diffusion L0-
norm constraint LMS/F (L0-LMS/F) algorithms are developed to
exploit sparsity in the underlying system model. Simulations in non-
Gaussian noise environments show that the diffusion LMS/F algorithm
obtains better performance than the diffusion LMS and LMF algo-
rithms, and the diffusion sparse LMS/F algorithms outperform the
diffusion LMS/F algorithms for sparse system estimation.

2. Diffusion LMS algorithm

The considered network is composed of N nodes distributed over a
geographic region. At each time instant i, each node k has access to the
time realization d i u{ ( ), }k k i, of zero-mean random data d ui{ ( ), }k k i, ,
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where d i( )k is a scalar measurement and uk i, is a M1 × regression
vector. The relationship between d i( )k and uk i, is supposed to be linear

d i u w v i( ) = + ( )k k i
o

k, (1)

where wo is the unknown M-dimensional parameter vector of interest
and v i( )k is the measurement noise with variance σv k,

2 . Here, it is
assumed that uk i, and v i( )k are independent over time and space.

The diffusion LMS algorithm is obtained by minimizing the mean
square error cost function for each node k[3]

∑ d uJ w c E i w( ) = [( ( ) − ) ]k
loc

l N
l k l l i

∈
, ,

2

k (2)

where Nk denotes the set of nodes in the neighborhood of node k
including itself, c{ }l k, are real, non-negative, and satisfy c∑ = 1l

N
l k=1 , .

The diffusion LMS algorithm performs the estimation with two
steps: adaptation and combination. According to the order of these two
steps, the diffusion LMS algorithm is classified into the ATC and CTA
diffusion LMS algorithms [3].

1) ATC diffusion LMS algorithm:
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2) CTA diffusion LMS algorithm
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where ψk i, is an intermediate estimate of wo at node k, μk is the step size,

a{ }l k, are real, non-negative, and satisfy a∑ = 1l
N

l k=1 , .

3. Diffusion LMS/F algorithm

For each node k, the mixed square/fourth error cost function is
considered

∑ d u d uJ w c E i w λ λ i w( ) = [( ( ) − ) − ln( + ( ( ) − ) )]k
loc

l N
l k l l i l l i

∈
, ,

2
,

2

k (5)

where λ is a positive design parameter.
Using the steepest-descent method, after the similar derivations as

in [3], the diffusion LMS/F algorithm is obtained.

1) ATC diffusion LMS/F algorithm
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2) CTA diffusion LMS/F algorithm
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Remark #1. : The comparison of the mixed square/fourth cost
function with the square cost function and fourth-order cost function
is shown in Fig. 1. From this figure, we observe that the mixed square/
fourth cost function exhibits comparable steepness as the fourth-order
cost function for small perturbations of the error, and the mixed
square/fourth cost function exhibits comparable steepness as the
square cost function for relatively larger error values. Hence, by
using the mixed square/fourth cost function, the proposed algorithm
obtains comparable convergence rate with the conventional diffusion
LMS algorithm and achieves lower steady-state misalignment through
the use of the fourth-order statistics for small perturbations of the
error.

Remark #2. : In [11], the stability of the LMS/F algorithm has been
discussed. It reveals that the LMS/F algorithm owns comparable
stability with the LMS algorithm. Moreover, as illustrated in Fig. 1,
the mixed square/fourth cost function exhibits comparable steepness
as the square cost function for relatively larger error values and,
consequently, the proposed algorithm inherits the stability of the
diffusion LMS algorithm.

4. Extend to sparse distributed estimation

The diffusion LMS/F algorithm is extended to sparse distributed
estimation in this section. To seek an estimate of wo at node k, we
minimize the following penalized mixed square/fourth error cost
function with Lp-norm

∑ d u d uJ w c E i w λ λ i w γ w( ) = [( ( ) − ) − ln( + ( ( ) − ) )] +k
loc
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l k l l i l l i p

∈
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where w p denotes the Lp-norm with respect to w, and γ is the weight
given to the Lp norm constraint.

Following the derivation in [5], we obtain the diffusion sparse LMS/
F algorithm below.

1) ATC diffusion sparse LMS/F algorithm
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2) CTA diffusion sparse LMS/F algorithm
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where ξ w ξ w ξ w ξ w ξ w( ) = [ ( ), ( ), ... ( )... , ( )]p p p p m p M1 2 is the derivative
of the Lp-norm with respect to w, and wm denotes the mth component
of w. Next, we will describe ξ w( )p m for each diffusion sparse LMS/F
algorithm in detail.

1) Diffusion L1-LMS/F algorithm

⎪
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2) Diffusion RL1-LMS/F algorithm

Fig. 1. Comparison of different stochastic cost functions, (a) fourth-order cost function
f e e( ) = 4, (b) square cost function f e e( ) = 2, (c) mixed square/fourth cost function

f e e λ λ e λ( ) = − ln( + ), = 12 2 .
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