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a b s t r a c t 

Frequency-Domain Blind Source Separation (FD-BSS) is an efficient way to analyze convolutive mixed 

speech. To improve the quality of the separated speech, a permutation algorithm based on Dynamic Time 

Warping (DTW) is proposed in this paper. Because signals in adjacent frequency bins have high similarity, 

DTW technology is used to compare them and generate adjustment matrices to solve the permutation 

ambiguity. Our approach is evaluated through simulated and practical experiments. Using Signal to Dis- 

tortion Ratio (SDR), Signal to Interference Ratio (SIR), Signal to Artifacts Ratio (SAR), and Perceptual Estima- 

tion of the Speech Quality (PESQ) for measurements. To examine the quality of the separated speech in 

a practical acoustic environment, we adopt the accuracy ratio of Automatic Speech Recognition (ASR). In 

the experiments, we compare our approach with other classical permutation criteria such as K-L diver- 

gence distance, envelope correlation and higher-order statistics. The experimental results show that the 

proposed algorithm performs permutation alignment more accurately and improves the acoustic quality 

of separation. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Blind Source Separation (BSS) is an effective approach for esti- 

mating the original source signals using only the information in 

the mixed signals observed by each sensor, which consist of mix- 

tures of the original signals ( Xie et al., 2012 ; Vincent et al., 2006 ). 

This technique can acquire independent source signals without any 

prior knowledge of either the source signals or the mixing matrix 

( Thi and Jutten, 1995 ), and it is applicable to both speech recog- 

nition and high-quality telecommunication systems. BSS is also an 

important method for auditory scene analysis in convolutive en- 

vironments. The fundamental principle of BSS is shown in Fig. 

1 ( Haykin, 20 0 0 ). 

As shown in Fig. 1 , the observation vector x = 

[ x 1 (t) , x 2 (t) , · · · , x N (t) ] T can be modeled as 

x = A · s , (1) 

where “instantaneous mixing matrix” A is invertible and s = 

[ s 1 (t) , s 2 (t) , · · · , s N (t) ] T denotes an independent source. This 

mixing is termed “instantaneous” because the observation vectors 

at the current time depend on the sources at the same, but no ear- 
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lier, time point. The goal of BSS is to find a “separating matrix”, W , 

such that 

ˆ s = W · x (2) 

is an optimal estimation of the source signal s . 

Several algorithms have been proposed to achieve BSS ( Haykin, 

20 0 0, Bell. and Sejnowski., 1995 ; Haykin, 20 0 0, Deville. and 

Duarte., 2015 ). Among them, Independent Component Analysis (ICA) 

( Comon, 1994 ) plays an important role in speech BSS. Research has 

proven that the ICA method can separate “clean” speech and noise 

effectively in instantaneous mixing conditions. However, the sound 

may become distorted by influences such as time-delay and rever- 

beration imposed in the real acoustic environment when propa- 

gated in a medium. This means that signals are spatially filtered, 

i.e., they are convolutively mixed before arriving at the receiver 

( Chen et al., 2015 ; Jan et al., 2011 ). Convolutive mixing signals are 

more difficult to separate than instantaneous mixing signals be- 

cause of the more complicated conditions under which they are 

generated. 

Two methods based on ICA have been proposed. The first is 

to construct a Time-Domain (TD) deconvolutive filter and directly 

employ an instantaneous ICA algorithm to separate the mixed sig- 

nals ( Gao et al., 2013 ; Mahajan and Betrabet, 2015 ; Buchner et 

al., 2005 ). However, the high computation and parameter adjust- 

ing load required for the deconvolutive filter may present prac- 

tical limitations owing to the excessive length of the Finite Im- 
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Fig. 1. Fundamental principle of BSS. 

pulse Response (FIR) filter. The second method is to transform the 

mixed signals from the TD to the Frequency-Domain (FD) using 

a Short Time Fourier Transform (STFT) ( Koldovsky and Tichavsky, 

2011 ). In the FD, signals from the convolutive mixture in the 

TD are transformed into instantaneous mixtures; consequently, a 

complex-valued ICA method can be applied to separate the signals 

of the instantaneous mixture in each frequency bin ( Wang et al., 

2005 ; Koya et al., 2011 ; Fu et al., 2015 ; Hyvärinen, 2013 ). 

Permutation ambiguity is one of the inherent indeterminacies 

in the ICA algorithm ( Wang et al., 2004 ). For the instantaneous ICA 

model, the relationship between the source signal s and the esti- 

mated signals ˆ s can be inferred from Eq. (1) and Eq. (2) as follows: 

ˆ s = W · x = W · A · s = D · s . (3) 

Considering that the input sources are independent, matrix D 

exists only with a non-zero element in each column and line, i.e., 

D = P�, (4) 

where P and � are the transport matrix and the diagonal matrix, 

respectively. Matrix P will lead to output permutation indetermi- 

nacy, namely, the channel orders of the estimated output signals 

are not fixed. In the instantaneous ICA model, permutation ambi- 

guity is present only in the output channel indeterminacy because 

a single separation operation is processed. In contrast, in a Fre- 

quency Domain BSS (FD-BSS) model, the ICA algorithm is executed 

in each frequency bin independently, and permutation ambiguity 

becomes a serious problem. The order of recovered signals in each 

frequency bin must be aligned so that the reconstructed signals 

in the TD will not be mixed with other sources. Various methods 

have been proposed to solve this problem. Smaragdis smoothed 

the separation matrices, but this method is ineffective when the 

mixing filter is too long ( Smaragdis, 1998 ; Schobben and Sommen, 

2002 ). Asano detected the correlation between envelopes of sig- 

nals from adjacent frequency bins in ( Asano et al., 2003 ), but the 

approach is insufficiently robust because only some envelope infor- 

mation can be extracted to match and, consequently, some detail 

information may be ignored. Ikram proposed a method to estimate 

the Direction of Arrival (DOA) of signals to overcome the permuta- 

tion ambiguity in ( Ikram and Morgan, 2002 ), however, this method 

requires the sources to be far from the microphones, and the sig- 

nal propagation is a planar wave front. In that case, DOA can es- 

timate the source’s direction from the separation matrix, but for 

some frequency bins, especially at low frequencies, the direction 

of the sources cannot be estimated ( Sawada et al., 2004 ). 

In this paper, a new permutation algorithm based on Dynamic 

Time Warping (DTW) is presented and used to solve the permu- 

tation ambiguity. First, the feature vectors for the first frequency 

bin signals are extracted and saved as reference templates. When 

the next adjacent frequency bin signals are input, the proposed 

algorithm compares the similarities of the featured input signals 

with the reference templates and then outputs an adjustment ma- 

trix, which is determined by the minimum distortion between two 

adjacent frequency bin signals. In this way, the signals of all fre- 

quency bins are processed completely to obtain the reconstructed 

signals in the TD. To improve the algorithm’s reliability, it uses lin- 

ear predictive coding cepstrum (LPCC) as the feature parameters. The 

experimental results show that the proposed algorithm improves 

the permutation performance and the quality of separated speech. 

The remainder of this paper is organized as follows: Section 

2 introduces the FD-BSS algorithm based on ICA. Section 3 de- 

scribes how to use DTW algorithm to solve the permutation am- 

biguity in detail. By first depicting the fact that signals in adjacent 

frequency bins have high similarity (meaning the DTW algorithm 

can be used to solve the problem of permutation ambiguity) and 

second, by introducing the fundamental principle of the DTW algo- 

rithm. Finally, it illustrates the process of the proposed algorithm 

using a case of the Two-Input-Two-Output (TITO) convolutive mix- 

ing model. Simulated and practical acoustic environment experi- 

ments are described in Section 4 , and Section 5 presents conclu- 

sions. 

2. Frequency-domain BSS based on the ICA algorithm 

In a practical acoustic environment, the existence of reverber- 

ation and time-delay creates a convolutive mixing effect between 

the observed signal x , and the speech sources s . This process can 

be expressed as described in ( Yousefian et al., 2015 ), 

x i (t) = 

N ∑ 

j=1 

a i j (t) ∗ s j (t) = 

N ∑ 

j=1 

P−1 ∑ 

k =0 

a i j (k ) s j (t − k ) i = 1 , 2 , · · · , N , 

(5) 

where P is the order of the mixing filter, and a i j denotes the im- 

pulse response from the j th source to the i th speech sensor. The 

FD-BSS algorithm acts to convert the TD signals, x i (t) , into the FD 

signals, X i ( f ) , using STFT: 

X i ( f ) = 

N ∑ 

j=1 

A i j ( f ) · S i ( f ) i = 1 , 2 , · · · , N. (6) 

In Eq. (6) , an instantaneous ICA algorithm can be used directly 

to separate the mixing speech signals into different frequency bins. 

To achieve this transformation, a windowing and STFT process is 

applied to the original mixing signals 

X i ( f l , τ ) = 

L −1 ∑ 

t=0 

x i (t) win (t − τ ) exp (− j2 π f l t) , i = 1 , 2 , · · · , N, (7) 

where l = 0 , 1 , ..., L − 1 , f l = (l/L ) f s represents the l th frequency 

bin, win (t) denotes a windowing function, τ means the position 

of the window function, and f s is the sampling frequency. For sim- 

plicity, we illustrate the process using a case of a TITO convolutive 

mixture model. 
An L × M complex value matrix stemming from the observation 

signals x i (t) will be obtained after the STFT operation: 

ST F T ( x i ) 

= 

⎡ 

⎢ ⎢ ⎣ 

X i ( f 0 , τ0 ) X i ( f 0 , τ1 ) · · · X i ( f 0 , τM−1 ) 
X i ( f 1 , τ0 ) X i ( f 1 , τ1 ) · · · X i ( f 1 , τM−1 ) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

X i ( f L −1 , τ0 ) X i ( f L −1 , τ1 ) · · · X i ( f L −1 , τM−1 ) 

⎤ 

⎥ ⎥ ⎦ 

i = 1 , 2 , 

(8) 

where M denotes the frame movement time and x i is the i th chan- 

nel of observation signals. Then, two observation channel vectors 
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