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a b s t r a c t 

This paper deals with adaptively preconditioned iterative methods for solving large and sparse systems of 

linear equations. In particular, the paper discusses preconditioning where adaptive dropping reflects the 

quality of preserving the relation UZ = I between the direct factor U and the inverse factor Z that satisfy 

A = U 

T U and A −1 = Z Z T . The proposed strategy significantly extends and refines the approach from [1], 

see also [2], by using a specific multilevel framework. Numerical experiments with two levels demon- 

strate that the new preconditioning strategy is very promising. Namely, we show a surprising fact that 

in our approach the Schur complement is better to form in a more sophisticated way than by a standard 

sparse matrix-matrix multiplication. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

An important source of linear systems with positive definite 

matrices is represented by discretization of partial differential 

equations. Such equations arise in numerous applications in sci- 

ence and engineering and often lead to problems with sparse ma- 

trices. Let us consider the system of linear equations 

Ax = b, A ∈ R 

n ×n , x ∈ R 

n , b ∈ R 

n , (1) 

where A is the system matrix, x is the vector of unknowns and b 

is the right-hand side vector. Here we will assume that the system 

matrix A is symmetric and positive definite. 

Direct methods including the sparse Cholesky method as their 

standard representative are often considered as a method of 

choice. This approach is usually based on the factorization A = 

U 

T U, where U is upper triangular. An important alternative to di- 

rect solvers are iterative Krylov space methods. In the symmetric 
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and positive definite case, a natural choice in this class is the con- 

jugate gradient (CG) method. In order to increase the robustness 

of iterative methods, the system (1) needs to be transformed, and 

this transformation is called preconditioning. 

While in some cases preconditioning can be application-based, 

in other situations we have to rely on general algebraic approaches. 

Consequently, the need for generally reliable incomplete factor- 

izations is strong. An important preconditioning strategy is based 

on incomplete Cholesky factorizations, that is on factorization A ≈
ˆ U 

T ˆ U , where ˆ U is upper triangular. There are a lot of possibilities 

to determine the way to approximate the exact Cholesky factoriza- 

tion. 

But there are a few potential problems connected to the incom- 

plete Cholesky factorization. First, it can break down. This means 

that a diagonal entry computed at some factorization step is zero 

or negative. Such a situation can be cured by various strategies 

that modify the original matrix introducing in this way an addi- 

tional error. Formally the incomplete Cholesky factorization can be 

described as an exact factorization of a perturbed matrix 

A + � ˆ E = 

ˆ U 

T ˆ U , (2) 

where the matrix ˆ E is called the factorization error. Theoretical 

analysis of the incomplete Cholesky factorization that takes into 
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account general matrix perturbations used in practice is very diffi- 

cult and successful only in special cases, see, e.g., [3] . In addition, 

the bounds for the factorization error are often rough, they typi- 

cally need additional assumptions and are difficult to apply if the 

factorization should be kept reasonably sparse. An important step 

to make factorization more robust is based on incomplete factors 

computed with the inverse-based dropping proposed by Bollhöfer 

and Saad [4–6] . Another attempt to get more reliable factorization 

is to evaluate simultaneously the direct approximate factor ˆ U with 

the approximate inverse factor ˆ Z , see [7,8] . 

A counterpart of the Cholesky factorization is the inverse fac- 

torization introduced in [9] . It computes A 

−1 = Z Z T with Z upper 

triangular. Its algorithm is nothing more than the Gram–Schmidt 

orthogonalization of standard unit vectors with respect to a non- 

standard inner product induced by the matrix A . In this way we 

get two factors Z and U that satisfy the identities ZU = UZ = I. 

Similarly to the Cholesky factorization of A , the inverse factoriza- 

tion can be computed incompletely. In general, even more effort 

must be done to keep reasonable sparsity in the approximate in- 

verse factorization A 

−1 ≈ ˆ Z ̂  Z T computed by the approximate Gram–

Schmidt orthogonalization, but such approximate inverse construc- 

tion has also strong advantages. For example, we can get an incom- 

plete Cholesky factor U without a breakdown and construct rather 

robust preconditioners for some classes of problems [10,11] . 

There is a rich history of incomplete factorizations that are 

based on multilevel reorderings or that explicitly use more levels 

in the factorization. Let us consider first the goal to achieve the 

multilevel effect by reorderings including also approaches for more 

general systems than symmetric and positive definite. In case of 

matrices from structured PDE discretizations we have interesting 

examples of recursive red-black reorderings in [12] where the au- 

thor looks at conditioning of the final system matrix, studies the 

nested recursive factorization with two levels for nine-point dif- 

ference matrices [13] and use it as a smoother in multigrid. An- 

other combination of multigrid with incomplete factorization is 

described in [14] . A renumbering strategy with more levels that 

works also on unstructured grids was presented in [15] , see also 

[16] . Let us also mention general matrix reorderings in [17] , solving 

eigenvalue problems in [18] and also the use of more levels in in- 

complete factorizations in various applications. Such factorizations 

are typically used either directly, for example, for solving saddle- 

point problems, or as preconditioners, see, e.g., in [19–21] , and also 

[22] . Related approximate inverse factorizations considered here is 

the line of research in [23–25] . We believe that the construction 

of the Schur complement proposed here may be combined with 

the framework and strategies in [26–28] , but see also recent pa- 

pers on other multilevel approaches from domain decomposition 

and nonsymmetric multilevel approximate inverse technique based 

on a block independent set reordering scheme and using factorized 

inverses as [29] . 

This paper presents a multilevel approach for computing the 

above mentioned approximate inverse factorization. The factoriza- 

tion uses the adaptive dropping introduced in [30] , see also [1] . 

Here we propose the approximate inverse multilevel factorization 

as well as a new way to perform data transfer between levels in 

order to minimize the errors caused by related incomplete orthog- 

onalization process. 

If we use the computed approximate factorized inverse as a 

preconditioner of some Krylov space method then the transformed 

system is 

ˆ Z T A ̂

 Z y = 

ˆ Z T b, x = 

ˆ Z y. (3) 

The quality of the approximation is determined by the loss of or- 

thogonality between the column vectors of ˆ Z defined as � ˆ H = 

ˆ Z T A ̂

 Z − I. This quantity is an analogue of the expression 

ˆ U 

−T A ̂

 U 

−1 −
I introduced by Chow and Saad [31] as a measure of stability. It is 

clear that a small right residual � ˆ G = I − ˆ U ̂

 Z together with a small 

error in Cholesky factorization (2) imply a small loss of orthogo- 

nality � ˆ H . Indeed, we have 

ˆ Z T A ̂

 Z − I = 

ˆ Z T ( ̂  U 

T ˆ U − � ˆ E ) ̂  Z − I = � ˆ G 

T + � ˆ G + � ˆ G 

T � ˆ G − ˆ Z T � ˆ E ̂  Z . 

(4) 

This relation is a theoretical basis of the adaptive dropping that we 

will use here. 

The paper is organized as follows. Basics of the underlying the- 

ory are summarized in Section 2 . The multilevel scheme is de- 

scribed in Section 3 . Experimental results showing the qualitative 

improvements of the new approach are shown in Section 4 and the 

paper is finalized by conclusions and description of future work. 

2. Gram–Schmidt based approximate inverse preconditioners 

Let us consider the Gram–Schmidt orthogonalization of the 

standard unit vectors e 1 , . . . , e n with respect to the inner product 

〈·, ·〉 A induced by the matrix A . We assume that the unit vectors 

are permuted so that they represent column vectors of the permu- 

tation matrix P . In this case, the Gram–Schmidt process applied to 

the columns of P leads to the factors Z and U satisfying 

ZU = P, (5) 

where the columns of Z are A -orthonormal with Z T AZ = I and U 

is the upper triangular Cholesky factor of the matrix P T AP = U 

T U . 

It is clear that Z is the inverse factor satisfying A 

−1 = Z Z T . The 

Gram–Schmidt process is summarized in Algorithm 1 , where Z = 

[ z 1 , . . . , z n ] are the resulting A -orthonormal vectors and U = [ α j,k ] 

contains the orthogonalization and normalization coefficients. Here 

we consider the modified version of the Gram–Schmidt process 

[32] that is equivalent to the SAINV algorithm [33] as explained 

in [2] . 

Algorithm 1 Modified version of the Gram–Schmidt process with 

column permutation and with respect to the inner product 〈·, ·〉 A . 
for k := 1 → n do 

z (0) 
k 

:= Pe k 
for j := 1 → k − 1 do 

α j,k := 〈 z ( j−1) 
k 

, z j 〉 A 
z 
( j) 
k 

:= z 
( j−1) 
k 

− α j,k z j 
end for 

αk,k := ‖ z (k −1) 
k 

‖ A 
z k := z (k −1) 

k 
/αk,k 

end for 

Algorithm 1 computes for each k a column z k of the factor Z us- 

ing the vector Pe k that is A -orthogonalized against the previously 

computed vectors z 1 , . . . , z k −1 . This organization of the computa- 

tion is known as the left-looking approach. Our goal is to obtain 

factor U such that its entries satisfy inequalities 

α1 , 1 ≥ α2 , 2 ≥ . . . ≥ αn,n > 0 (6) 

α2 
i,i ≥

k ∑ 

j= i 
α2 

j,k , k = i + 1 , . . . , n. (7) 

Note that, (6) and (7) also imply 

α j, j > | α j,k | , j = 1 , . . . , n, k = j + 1 , . . . , n. (8) 

The permutation P that leads to U in the above mentioned form is 

not a priori known and has to be computed on-the-fly. In addition, 

Algorithm 1 requires additional precomputation of orthogonaliza- 

tion coefficients using the classical variant of the Gram–Schmidt 
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