
ARTICLE IN PRESS

JID: ADES [m5G; December 14, 2016;20:40]

Advances in Engineering Software 0 0 0 (2016) 1–12

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

A parallel implementation of an implicit discontinuous Galerkin finite

element scheme for fluid flow problems

Jan Vimmr ∗, Ond ̌rej Bublík , Aleš Pecka

European Centre of Excellence NTIS – New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8,

CZ-306 14, Pilsen, Czech Republic

a r t i c l e i n f o

Article history:

Received 29 February 2016

Revised 10 November 2016

Accepted 30 November 2016

Available online xxx

MSC:

76N10

65N30

65Y05

35Q35

Keywords:

Discontinuous Galerkin finite element

method

Implicit scheme

Compressible Navier–Stokes equations

Parallel computing

Overlapping Schwarz method

Shock capturing

Java RMI

a b s t r a c t

The discontinuous Galerkin (DG) method is frequently used in computational fluid dynamics for its sta-

bility and high order of accuracy. A disadvantage of the DG method is its high computational demands.

The aim of this paper is to weaken this drawback by means of parallelization of the DG algorithm. The

computation is performed on a network of computers with distributed memory using the Java Remote

Method Invocation, which is included in the Java programming language. The partition of the boundary

value problem into n subproblems, which is then solved by n computers separately, is based on the over-

lapping Schwarz method. On basis of physical nature of the problem, the present paper proposes minimal

size of the overlap that allows for only one Schwarz iteration thereby increasing efficiency of paralleliza-

tion. The scalability and efficiency of the presented parallelization approach is demonstrated on several

test problems. In order to stabilize the DG method in presence of shocks, a recently developed technique

by Huerta et al. (Int. J. Numer. Meth. Fluids 69(10), 2012, 1614–1632), which introduces discontinuities in

basis functions in regions with a shock, is adopted here. A modification of this approach, which lowers

the computational and implementational demands, is presented here.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The discontinuous Galerkin (DG) finite element method [1–6] is

currently the most rapidly developing method in the field of com-

putational fluid dynamics. The growing popularity is mainly due

to its stability, robustness, low artificial damping and the ability to

achieve high-order spatial accuracy. The DG discretization produces

a large number of degrees of freedom in comparison with the fi-

nite element method or even more so to the finite volume method

for the same computational mesh. In other words the DG method

has higher computational demands. Papers [7,8] marginally deal

with this drawback and compare different time integration meth-

ods, namely implicit [9] , explicit [4] and explicit local time step-

ping methods [7,8,10] . The outcome of studies [7,8] is that the

computational efficiency of the implicit and explicit local time

stepping schemes are comparable, whereas classical explicit

schemes are considerably less efficient. In this paper, we employ

∗ Corresponding author. Tel: +420 377 632 304.

E-mail address: jvimmr@kme.zcu.cz (J. Vimmr).

implicit methods. Namely the backward Euler method is sufficient

alternative for problems of finding the steady state. In order to

find the time dependent solution we choose a second-order im-

plicit method. We solve the resulting system of linear equations by

GMRES [11] with the Jacobi preconditioner.

The main target of this study is to overcome high computa-

tional demands of the DG method using parallel computing. The

aim is not only to be able to perform the parallel computation on

a supercomputer, but also on PCs which might be found in an av-

erage office or in a computer laboratory in a college. Such com-

puters are typically connected by slow Ethernet or Wi-Fi and have

various hardware setups and various operating systems installed.

The computation may run in the background while the comput-

ers are being used, since the hardware is rarely fully utilized dur-

ing ordinary office work. For these purposes the Java programming

language seems to be an appropriate choice, since software devel-

oped in Java is not dependent on the type or version of the oper-

ating system. It is still a common misconception that code written

in Java, which is a dynamically compiled language, is considerably

slower in comparison with statically compiled languages such as C,

C++ or Fortran. While there is still a noticeable difference between

http://dx.doi.org/10.1016/j.advengsoft.2016.11.007

0965-9978/© 2016 Elsevier Ltd. All rights reserved.

Please cite this article as: J. Vimmr et al., A parallel implementation of an implicit discontinuous Galerkin finite element scheme for fluid

flow problems, Advances in Engineering Software (2016), http://dx.doi.org/10.1016/j.advengsoft.2016.11.007

http://dx.doi.org/10.1016/j.advengsoft.2016.11.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
mailto:jvimmr@kme.zcu.cz
http://dx.doi.org/10.1016/j.advengsoft.2016.11.007
http://dx.doi.org/10.1016/j.advengsoft.2016.11.007

2 J. Vimmr et al. / Advances in Engineering Software 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: ADES [m5G; December 14, 2016;20:40]

the execution times in favour of statically compiled languages, the

gap significantly shrank after the introduction of the JIT compiler

in 1998 and after the release of extensive performance updates to

the JIT compiler in the following years. The fact that Java is catch-

ing up with C and Fortran was already reported in 2001 by Bull

et al. [12] who concluded that ’the performance gap between Java

and more traditional scientific programming languages is no longer

a wide gulf’. We believe that although the performance of Java

does not match the performance of C, C++ or Fortran, the ease of

coding and platform independence compensates for this inconve-

nience. Furthermore, if necessary, the critical sections of the code

can be written in other languages and then included in the Java

application using the Java Native Interface (JNI).

The communication among computers is usually realized by the

Message Passing Interface (MPI). In the present work, we apply

the Java Remote Method Invocation (Java RMI) included in the Java

programming language. The Java RMI technology enables to call a

Java method on a remote virtual machine and, as opposed to MPI,

is easily applicable to a heterogeneous computer network. Studies

[13,14] compare Java RMI with MPI.

For parallelization of algorithms for solving boundary value

problems on systems with distributed memory, the domain de-

composition method is commonly used. Examples of domain de-

composition methods are the Schwarz method [15–19] or the

Schur complement Method [20] . In this work, there are two lev-

els at which the implicit DG algorithm is parallelized - among dif-

ferent nodes (computers) in a computer network and within each

one. At the level of network, we employ the Schwarz method [15–

17] , where the computational domain is divided into several over-

lapping sub-domains. The computation is then performed on each

sub-domain by a different node. At the level of individual nodes,

we subject the GMRES solver to parallelization. More specifically,

the individual vector operations involved in GMRES (e.g. matrix-

vector multiplications) are parallelized within each node using Java

threads.

This paper also addresses stabilization of the DG method. The

dissipation due to the numerical fluxes, which arises from the

jump terms, is not sufficient to stabilize the solution in presence of

shocks when high order of approximation is used. One option is to

damp the solution near shocks, which in combination with mesh

refinement is an effective approach. A very popular form of damp-

ing is adding artificial viscosity into the shock regions [9,21,22] .

Another possibility is to subject the solution in the critical re-

gion to a limiting process [23,24] , which unfortunately decreases

approximation order. We adopt a novel technique developed by

Huerta et al. [25] , which stabilizes the approximate solution near a

shock with the aid of numerical fluxes, by introducing basis func-

tions, which have discontinuities inside elements, in regions with

a shock. We also propose a simplification of this stabilization ap-

proach, which decreases the implementational and computational

demands and is still fairly effective.

We choose three test problems, namely the subsonic viscous

flow in a 2D convergent channel, supersonic inviscid flow in the

2D Mach 3 wind tunnel with a step and subsonic inviscid flow in

the 2D GAMM channel. For each test problem we perform several

computations on various numbers of nodes and threads and calcu-

late the efficiency and speedup of the parallelization.

The outline of this paper is as follows. In Section 2 we define

the mathematical model based on the compressible Navier–Stokes

equations in two dimensions and briefly review the DG discretiza-

tion along with the implicit time integration. The stabilization ap-

proach is presented in Section 2.3 . Section 3 contains the main

topic of the present paper, which is parallelization. The numeri-

cal test are performed in Section 4 and their results are discussed

and conclusion is drawn in Section 5 .

2. Mathematical model and implicit DG scheme

Before moving onto the parallelization itself, which is the main

topic of this paper, we first describe the mathematical model and

the implicit DG scheme employed in the upcoming simulations.

The developed parallelization approach is not dependent on the

discretization, hence other schemes can be parallelized in the same

manner.

2.1. Governing equations

The non-linear system of Navier–Stokes equations, which de-

scribes the compressible viscous flow, written in a conservative

vector form for the two dimensional case is

∂ w

∂t
+

2 ∑

s =1

∂

∂x s
f s (w) =

2 ∑

s =1

∂

∂x s
f

v
s (w , ∇ w) , (1)

where x = [x 1 , x 2]
T ∈ � ⊂ R

2 is the vector of Cartesian coordinates,

t ∈ [0 , T] is the time variable, w (x , t) = [� , � u 1 , � u 2 , E] T is the vec-

tor of conservative variables with density ϱ, velocity vector u =

[u 1 , u 2]
T and total energy per unit volume E . Furthermore, the in-

viscid and viscous fluxes are respectively defined by

f s (w) = [� u s , � u s u 1 + pδs 1 , � u s u 2 + pδs 2 , (E + p) u s]
T ,

f
v
s (w) = [0 , τ1 s , τ2 s , u 1 τ1 s + u 2 τ2 s + k∂ T /∂ x s] T ,

s = 1 , 2

(2)

with pressure p , temperature T and thermal conductivity k . The

stress tensor τ ij is given by

τi j = μ

(
∂u i

∂x j
+

∂u j

∂x i
− 2

3

∂u k

∂x k
δi j

)
, i, j = 1 , 2 , (3)

where μ is the dynamic viscosity and δij is the Kronecker delta.

The system of governing Eqs. (1) is completed by the constitutive

relation for ideal gas

p = (κ − 1)

[

E − 1

2

�

2 ∑

s =1

u

2
s

]

, (4)

with the adiabatic index κ . The term k ∂ T / ∂ x s is often rewritten as

follows

k
∂T

∂x s
=

κ

κ − 1

μ

Pr

∂

∂x s

(
p

�

)
, (5)

where Pr is the Prandtl number. Constants κ and Pr take values

κ = 1 . 4 and Pr = 0 . 72 for air. The system of Eqs. (1) is equipped

with the initial condition

w (x , 0) = w 0 (x) , x ∈ �. (6)

The boundary condition prescribed on the boundary ∂� of the

computational domain � ∈ R

2 are as follows:

• At the subsonic inlet, stagnation pressure p in 0 , stagnation den-

sity �

in
0 , angle of attack αin are prescribed.

• At the supersonic inlet, density ϱin , pressure p in , velocities u in 1

and u in 2 are prescribed.
• At the subsonic outlet, the static pressure p out is prescribed.
• At the supersonic outlet, no boundary condition is prescribed.

• In case the flow is viscous, zero traction

2 ∑

s =1

τks n s = 0 , k = 1 , 2

and zero normal derivative ∂T
∂ n

= 0 are also prescribed at the

inlet and outlet.
• On the wall, zero velocity components u s = 0 , s = 1 , 2 and zero

normal derivative ∂T
∂ n

= 0 are prescribed in case of viscous flow

Please cite this article as: J. Vimmr et al., A parallel implementation of an implicit discontinuous Galerkin finite element scheme for fluid

flow problems, Advances in Engineering Software (2016), http://dx.doi.org/10.1016/j.advengsoft.2016.11.007

http://dx.doi.org/10.1016/j.advengsoft.2016.11.007

Download English Version:

https://daneshyari.com/en/article/4977892

Download Persian Version:

https://daneshyari.com/article/4977892

Daneshyari.com

https://daneshyari.com/en/article/4977892
https://daneshyari.com/article/4977892
https://daneshyari.com

