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a b s t r a c t 

The discontinuous Galerkin (DG) method is frequently used in computational fluid dynamics for its sta- 

bility and high order of accuracy. A disadvantage of the DG method is its high computational demands. 

The aim of this paper is to weaken this drawback by means of parallelization of the DG algorithm. The 

computation is performed on a network of computers with distributed memory using the Java Remote 

Method Invocation, which is included in the Java programming language. The partition of the boundary 

value problem into n subproblems, which is then solved by n computers separately, is based on the over- 

lapping Schwarz method. On basis of physical nature of the problem, the present paper proposes minimal 

size of the overlap that allows for only one Schwarz iteration thereby increasing efficiency of paralleliza- 

tion. The scalability and efficiency of the presented parallelization approach is demonstrated on several 

test problems. In order to stabilize the DG method in presence of shocks, a recently developed technique 

by Huerta et al. (Int. J. Numer. Meth. Fluids 69(10), 2012, 1614–1632), which introduces discontinuities in 

basis functions in regions with a shock, is adopted here. A modification of this approach, which lowers 

the computational and implementational demands, is presented here. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The discontinuous Galerkin (DG) finite element method [1–6] is 

currently the most rapidly developing method in the field of com- 

putational fluid dynamics. The growing popularity is mainly due 

to its stability, robustness, low artificial damping and the ability to 

achieve high-order spatial accuracy. The DG discretization produces 

a large number of degrees of freedom in comparison with the fi- 

nite element method or even more so to the finite volume method 

for the same computational mesh. In other words the DG method 

has higher computational demands. Papers [7,8] marginally deal 

with this drawback and compare different time integration meth- 

ods, namely implicit [9] , explicit [4] and explicit local time step- 

ping methods [7,8,10] . The outcome of studies [7,8] is that the 

computational efficiency of the implicit and explicit local time 

stepping schemes are comparable, whereas classical explicit 

schemes are considerably less efficient. In this paper, we employ 
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implicit methods. Namely the backward Euler method is sufficient 

alternative for problems of finding the steady state. In order to 

find the time dependent solution we choose a second-order im- 

plicit method. We solve the resulting system of linear equations by 

GMRES [11] with the Jacobi preconditioner. 

The main target of this study is to overcome high computa- 

tional demands of the DG method using parallel computing. The 

aim is not only to be able to perform the parallel computation on 

a supercomputer, but also on PCs which might be found in an av- 

erage office or in a computer laboratory in a college. Such com- 

puters are typically connected by slow Ethernet or Wi-Fi and have 

various hardware setups and various operating systems installed. 

The computation may run in the background while the comput- 

ers are being used, since the hardware is rarely fully utilized dur- 

ing ordinary office work. For these purposes the Java programming 

language seems to be an appropriate choice, since software devel- 

oped in Java is not dependent on the type or version of the oper- 

ating system. It is still a common misconception that code written 

in Java, which is a dynamically compiled language, is considerably 

slower in comparison with statically compiled languages such as C, 

C++ or Fortran. While there is still a noticeable difference between 

http://dx.doi.org/10.1016/j.advengsoft.2016.11.007 
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the execution times in favour of statically compiled languages, the 

gap significantly shrank after the introduction of the JIT compiler 

in 1998 and after the release of extensive performance updates to 

the JIT compiler in the following years. The fact that Java is catch- 

ing up with C and Fortran was already reported in 2001 by Bull 

et al. [12] who concluded that ’the performance gap between Java 

and more traditional scientific programming languages is no longer 

a wide gulf’. We believe that although the performance of Java 

does not match the performance of C, C++ or Fortran, the ease of 

coding and platform independence compensates for this inconve- 

nience. Furthermore, if necessary, the critical sections of the code 

can be written in other languages and then included in the Java 

application using the Java Native Interface (JNI). 

The communication among computers is usually realized by the 

Message Passing Interface (MPI). In the present work, we apply 

the Java Remote Method Invocation (Java RMI) included in the Java 

programming language. The Java RMI technology enables to call a 

Java method on a remote virtual machine and, as opposed to MPI, 

is easily applicable to a heterogeneous computer network. Studies 

[13,14] compare Java RMI with MPI. 

For parallelization of algorithms for solving boundary value 

problems on systems with distributed memory, the domain de- 

composition method is commonly used. Examples of domain de- 

composition methods are the Schwarz method [15–19] or the 

Schur complement Method [20] . In this work, there are two lev- 

els at which the implicit DG algorithm is parallelized - among dif- 

ferent nodes (computers) in a computer network and within each 

one. At the level of network, we employ the Schwarz method [15–

17] , where the computational domain is divided into several over- 

lapping sub-domains. The computation is then performed on each 

sub-domain by a different node. At the level of individual nodes, 

we subject the GMRES solver to parallelization. More specifically, 

the individual vector operations involved in GMRES (e.g. matrix- 

vector multiplications) are parallelized within each node using Java 

threads. 

This paper also addresses stabilization of the DG method. The 

dissipation due to the numerical fluxes, which arises from the 

jump terms, is not sufficient to stabilize the solution in presence of 

shocks when high order of approximation is used. One option is to 

damp the solution near shocks, which in combination with mesh 

refinement is an effective approach. A very popular form of damp- 

ing is adding artificial viscosity into the shock regions [9,21,22] . 

Another possibility is to subject the solution in the critical re- 

gion to a limiting process [23,24] , which unfortunately decreases 

approximation order. We adopt a novel technique developed by 

Huerta et al. [25] , which stabilizes the approximate solution near a 

shock with the aid of numerical fluxes, by introducing basis func- 

tions, which have discontinuities inside elements, in regions with 

a shock. We also propose a simplification of this stabilization ap- 

proach, which decreases the implementational and computational 

demands and is still fairly effective. 

We choose three test problems, namely the subsonic viscous 

flow in a 2D convergent channel, supersonic inviscid flow in the 

2D Mach 3 wind tunnel with a step and subsonic inviscid flow in 

the 2D GAMM channel. For each test problem we perform several 

computations on various numbers of nodes and threads and calcu- 

late the efficiency and speedup of the parallelization. 

The outline of this paper is as follows. In Section 2 we define 

the mathematical model based on the compressible Navier–Stokes 

equations in two dimensions and briefly review the DG discretiza- 

tion along with the implicit time integration. The stabilization ap- 

proach is presented in Section 2.3 . Section 3 contains the main 

topic of the present paper, which is parallelization. The numeri- 

cal test are performed in Section 4 and their results are discussed 

and conclusion is drawn in Section 5 . 

2. Mathematical model and implicit DG scheme 

Before moving onto the parallelization itself, which is the main 

topic of this paper, we first describe the mathematical model and 

the implicit DG scheme employed in the upcoming simulations. 

The developed parallelization approach is not dependent on the 

discretization, hence other schemes can be parallelized in the same 

manner. 

2.1. Governing equations 

The non-linear system of Navier–Stokes equations, which de- 

scribes the compressible viscous flow, written in a conservative 

vector form for the two dimensional case is 

∂ w 

∂t 
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2 ∑ 

s =1 
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∂x s 
f s ( w ) = 
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where x = [ x 1 , x 2 ] 
T ∈ � ⊂ R 

2 is the vector of Cartesian coordinates, 

t ∈ [0 , T ] is the time variable, w ( x , t) = [ � , � u 1 , � u 2 , E] T is the vec- 

tor of conservative variables with density ϱ, velocity vector u = 

[ u 1 , u 2 ] 
T and total energy per unit volume E . Furthermore, the in- 

viscid and viscous fluxes are respectively defined by 

f s ( w ) = [ � u s , � u s u 1 + pδs 1 , � u s u 2 + pδs 2 , (E + p) u s ] 
T , 

f 
v 
s ( w ) = [0 , τ1 s , τ2 s , u 1 τ1 s + u 2 τ2 s + k∂ T /∂ x s ] T , 

s = 1 , 2 
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with pressure p , temperature T and thermal conductivity k . The 

stress tensor τ ij is given by 

τi j = μ

(
∂u i 
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where μ is the dynamic viscosity and δij is the Kronecker delta. 

The system of governing Eqs. (1) is completed by the constitutive 

relation for ideal gas 

p = (κ − 1) 

[ 
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, (4) 

with the adiabatic index κ . The term k ∂ T / ∂ x s is often rewritten as 

follows 

k 
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∂x s 
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κ

κ − 1 

μ

Pr 
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(
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� 

)
, (5) 

where Pr is the Prandtl number. Constants κ and Pr take values 

κ = 1 . 4 and Pr = 0 . 72 for air. The system of Eqs. (1) is equipped 

with the initial condition 

w ( x , 0) = w 0 ( x ) , x ∈ �. (6) 

The boundary condition prescribed on the boundary ∂� of the 

computational domain � ∈ R 

2 are as follows: 

• At the subsonic inlet, stagnation pressure p in 0 , stagnation den- 

sity � 

in 
0 , angle of attack αin are prescribed. 

• At the supersonic inlet, density ϱin , pressure p in , velocities u in 1 

and u in 2 are prescribed. 
• At the subsonic outlet, the static pressure p out is prescribed. 
• At the supersonic outlet, no boundary condition is prescribed. 

• In case the flow is viscous, zero traction 

2 ∑ 

s =1 

τks n s = 0 , k = 1 , 2 

and zero normal derivative ∂T 
∂ n 

= 0 are also prescribed at the 

inlet and outlet. 
• On the wall, zero velocity components u s = 0 , s = 1 , 2 and zero 

normal derivative ∂T 
∂ n 

= 0 are prescribed in case of viscous flow 
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