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a b s t r a c t 

The objective of this work is to find a suitable algorithm for numerical Laplace inversion which could 

be used for effective and precise solution of elastodynamic problems. For this purpose, the capabilities 

of four algorithms are studied using three transforms resulted from analytical solutions of longitudinal 

waves in a thin rod, flexural waves in a thin beam and plane waves in a strip. In particular, the Gaver–

Stehfest algorithm, the Gaver–Wynn’s rho algorithm, the Fixed-Talbot algorithm and the FFT algorithm 

combined with Wynn’s epsilon accelerator are tested. The codes written in Maple 16 employing multi- 

precision computations are presented for each method. Given the results obtained, the last mentioned 

algorithm proves to be the best. It is most efficient and it gives results of reasonable accuracy nearly for 

all tested times ranging from 3 ×10 −7 s to 3 ×10 3 s . 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many science and engineering applications, integral trans- 

forms represent an important tool for solving ordinary/partial 

differential and integral equations of both integer and non-integer 

orders [1,2] . The main reason of this fact is that the solution 

can be found more easily in a transformed domain than in the 

original one. Laplace transform is one of the most frequently used 

and its inversion (ILT) is then an important step of the solving 

procedure. The inversion can be performed analytically using its 

definition or by the use of existing extensive Laplace transform 

tables [3–5] only in a limited number of problems. But in many 

practical applications the transforms are not given by closed 

analytical formulas and hence numerical inverse Laplace transform 

(NILT) has to be performed. Unfortunately, the numerical inversion 

often becomes ill-posed, see [6] . 

As stated in [7] , more than one hundred algorithms for NILT ex- 

ists. They can be divided into several groups according to the prin- 

ciples which are based on. Probably most of them make the use of 

the series expansion, usually power series or expansions in terms 

of orthogonal polynomials are used. The latter type is characterised 

by better convergence properties and number of works involving 

Chebyshev, Legendre or Laguerre polynomials can be found [8] . 
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Weeks method, based on orthonormal Laguerre functions expan- 

sion [9] , is the best-known and it has been modified and improved 

by many authors (e.g. [10–12] ), mainly in the sense of the de- 

termination of two free parameters [13] . Despite of this fact, this 

method is not frequently used nowadays. Quite different situation 

occurs with methods based on the approximation of Bromwich in- 

tegral defining ILT [2] . The detailed discussion of such methods can 

be found in an excellent book [8] . Most of them convert the prob- 

lem of Bromwich integral to the problem of Fourier integral and 

usually utilise Fourier series for its evaluation. In addition, the pro- 

cess of inversion can be significantly speed up by the use of FFT in 

this case [14] . Number of relevant references can be found in [7] . 

Other algorithms which passed the test of time are based on 

the well-known Post–Widder (P–W) formula [15,16] . The main 

disadvantages of these methods consist in slow convergence of 

resulting sequences and in difficult numerical computation of 

high-order derivatives. The earlier problem is overcome by the 

existence of extrapolation methods [17] . The second one is par- 

tially resolved by the use of powerful Computer Algebra Systems 

(CASs) as Maple, Mathematica etc. The usage of so called Gaver 

functionals which represent the discrete analog of P–W formula is 

another possibility how to avoid the latter difficulty. It was firstly 

published by Gaver [18] and as stated in [19] this approach gives 

better results than the methods based on classical P–W formula 

and gives good accuracy for a wide range of functions. 

The deformation of Bromwich integration contour is another 

popular approach to ILT. This idea was first published by Talbot 
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[20] and as mentioned in [7] only a few algorithms have been 

developed. The main drawback of this method is the need of 

complex calculus, but on the other hand when a multi-precision 

implementation in some CAS is used, it results in a quite simple 

procedure [7] . There exist some modifications of the original 

Talbot’s algorithm, see e.g. [7,21,22] , which mainly differ in the 

choice of integration path and used integration rule. 

Based on the previous description of possible NILT approaches 

it is obvious that nearly all methods involve the problem of 

infinite series (or sequences of partial sums), usually with low 

rate of convergence. To speed up the summation process, ex- 

trapolation methods can be used. Such methods transform the 

original sequence into a different sequence which converges to 

the same limit but with better rate of convergence. The history 

of sequence accelerators is mapped in detail in Brezinski’s book 

[17] . In general, linear and non-linear sequence transformations 

exist. Salzer summation [23] is probably the best-known linear se- 

quence transformation. In the well-known Gaver–Stehfest method 

[24] this algorithm is used to accelerate the logarithmically 

convergent sequence of Gaver functionals. Non-linear sequence 

transformations, like Wynn’s rho [25] and epsilon [26] algorithm, 

Brezinski’s theta algorithm [27] or quotient-difference algorithm 

[28] , have greater computer demands than the linear ones, but 

they are more powerful and succeed where the linear methods 

fail. That is why these non-regular algorithms are very popular, 

as declared by many references stated in [29] . Unfortunately, 

there exists no universal transformation to accelerate arbitrary 

sequence, as demonstrated by Sidi in [30] or as proved for loga- 

rithmically convergent sequences by Delahaye and Germain-Bonne 

in [31] . 

Many authors deal with the analysis and testing of different 

NILT algorithms with appropriate sequence accelerators. We can 

mention the former comparative studies of Davies and Martin 

[19] and Duffy’s paper [32] or more recent papers of Abate and 

Valkó [7,33] , Valkó and Vajda [34] , Hassanzadeh and Pooladi- 

Darvish [35] or Sheng et al. [36] . These authors test the methods 

using let say standardised set of transforms or transforms result- 

ing from practical applications. Moreover, some of them use the 

multi-precision implementations in CASs, namely in Mathemat- 

ica, and show that under certain conditions results of arbitrary 

precision can be obtained. But all these works point out that the 

right choice of the combination of a NILT method and a sequence 

accelerator depends on the problem solved and the use of at least 

two different algorithms is recommended to obtained relevant and 

accurate results. 

The purpose of this paper is to find a suitable and effective ILT 

algorithm for numerical inversion of transforms arising in 1D and 

2D problems of wave propagation in solids. Using the analytical 

solution of longitudinal waves in a thin elastic rod [37] , flexural 

waves in a simply supported thin Timoshenko viscoelastic beam 

[38] and the analytical solution of plane waves in a thin viscoelas- 

tic strip [39] we will study capabilities, accuracy and efficiency of 

four NILT algorithms which are based on: the Gaver functionals 

and Salzer summation [33] , the Gaver functionals and Wynn’s 

rho algorithm [7] , fixed Talbot algorithm [7] , FFT and Wynn’s 

epsilon algorithm [40] (FFTe). Contrary to other works in which 

the inversion is tested either for extremely short times (e.g. of 

orders 10 −8 s , see [40] ) or for times of orders 10 0 − 10 2 s (e.g. see 

[7,34] ), this work will study the capabilities of all above mentioned 

methods for times of orders 10 −7 − 10 3 s , such that both extreme 

values of times will be taken into account. The testing will be 

performed by the help of multi-precision computing provided by 

Maple 16. This approach enables us to determine the dependence 

of accuracy (the number of significant digits) on the number of 

decimal digits of precision for all times studied which is important 

information for the application of such numerical procedures. 

2. Laplace transform and description of used test transforms 

As stated in [8] , the most familiar formula for the expression of 

the Laplace transform F ( p ), p ∈ C, of a real function f ( t ) was given 

by Doetsch as 

F (p) = 

∫ ∞ 

0 

e −pt f (t ) dt . (1) 

It is assumed that the function f ( t ) is defined for all t ∈ 〈 0, ∞ ) and 

that the integral in (1) is convergent. If the function f ( t ) is piece- 

wise continuous on every finite interval in 〈 0, ∞ ) satisfying the 

condition | f ( t )| ≤ Ke st for all t ∈ 〈 0, ∞ ), where K > 0 and s ≥ 0, then 

the integral in (1) exists for all p that fulfil the condition Re( p ) > s . 

Using the Bromwich inversion theorem, the original real function 

f ( t ) can be expressed from (1) and for arbitrary real c > s holds 

f (t) = L 

−1 { F (p) } = 

1 

2 π i 

∫ c+ i ∞ 

c−i ∞ 

e pt F (p) dp. (2) 

The problem of numerical inverse Laplace transform then lies in 

the determination of f ( t ) for discrete values t > 0 based on the 

approximate evaluation of the integral in (2) . 

Three different types of transforms will be used for testing the 

precision and the power of selected NILT algorithms in this work. 

The first one is represented by the transform of sine function, 

i.e. by F 1 = 1 / (1 + p 2 ) , which appears in the analytical solution 

of transient waves in a fixed-free thin rod loaded by a pressure 

impulse, see [37] . This function also represents a standard test 

transform which is used in many papers dealing with NILT. It is 

well known that it is difficult to obtain the sine function from this 

transform numerically, see [33] . 

The second transform is taken from [38] and it represents a 

part of the Laplace transform of the function describing the re- 

sponse of a simply supported viscoelastic orthotropic Timoshenko 

beam to a pressure impulse of duration t 0 . The deflection of such 

a beam can be expressed as a function of longitudinal coordinates 

x and time t in the form of the following sine Fourier series [38] 

v (x, t) = 

∞ ∑ 

n =1 

C(n ) sin ( ω n x ) L 

−1 

{
(1 − e −pt 0 ) H 4 (n, p) 

pH 6 (n, p) 

}
, (3) 

where C ( n ) characterises the applied load and the other functions 

in (3) are defined by formulas [38] : 

H 4 (n, p) = d 0 
2 
(
ρ p 2 + ω n 

2 E ∗(p) 
)

+ 12 κ G 

∗(p) , 

H 6 (n, p) = b 0 d 0 

[ (
ρ p 2 + κ ω n 

2 G 

∗(p) 
)
H 4 (n, p) − 1 

12 

H 2 (n, p) 
2 
] 
, 

H 2 (n, p) = 12 κ ω n G 

∗(p) , ω n = nπ/l 0 , 

E ∗(p) = 

N ∑ 

k =0 

E x k −
N ∑ 

k =1 

E x k 
2 

λx k p + E x k 
, 

G 

∗(p) = 

N ∑ 

k =0 

G xy k −
N ∑ 

k =1 

G xy k 
2 

ηxy k p + G xy k 

. (4) 

The mentioned test transform derived from (3) will be denoted as 

F 2, n and will be given by the relation F 2 ,n = H 4 (n, p) / (pH 6 (n, p)) . 

The particular values of parameters present in (4) and used 

for testing were as follows: the beam length l 0 = 0 . 1 m , the 

height of the beam cross-section d 0 = 0 . 005 m , the width of 

the beam cross-section b 0 = 0 . 001 m , the Timoshenko’s shear 

coefficient κ = 0 . 833 , the material density ρ = 2250 kg m 

−3 
, the 

number of terms in sums N = 1 , the coefficients of shear and 

normal viscosity ηxy 1 = λx 1 = 5 ×10 4 Pa · s , the Young’s mod- 

uli E x 0 = 35 ×10 9 Pa , E x 1 = 18 . 48 ×10 9 Pa and the shear moduli 

G xy 0 = 4 ×10 9 Pa , G xy 1 = 18 . 3 ×10 8 Pa . It is out of scope of this 

paper to present detailed explanation of each parameter, therefore 

the interested readers are referred to [38] . 
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