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a b s t r a c t 

In this paper, an accurate and efficient numerical method for sound transmission analysis is presented. As 

an alternative to conventional numerical methods, such as the Finite Element Method (FEM), Boundary 

Element Method (BEM) and Statistical Energy Analysis (SEA), the FE-ERA method, which combines the 

FEM and Elementary Radiator Approach (ERA) is proposed. The FE-ERA method analyzes the vibrational 

response of the plate structure excited by incident sound using FEM and then computes the transmitted 

acoustic pressure from the vibrating plate using ERA. In order to improve the accuracy and efficiency of 

the FE-ERA method, a novel criterion for the optimal number of elementary radiators is proposed. The 

criterion is based on the radiator error index that is derived to estimate the accuracy of the computation 

with used number of radiators. Using the proposed criterion a radiator selection method is presented for 

determining the optimum number of radiators. The presented radiator selection method and the FE-ERA 

method are combined to improve the computational accuracy and efficiency. Several numerical examples 

that have been rarely addressed in previous studies, are presented with the proposed method. The ac- 

curacy and efficiency of the proposed method are validated by comparison with the results of the three 

dimensional (3D) FEM structure-acoustic interaction models. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The sound insulation performance of a plate structure is eval- 

uated by sound transmission loss (STL), which is the power ra- 

tio between incident and transmitted sound. Generally, the STL is 

proportional to the mass of the plate structure [1,2] . Because the 

amount of mass usage in a plate for sound insulation is highly 

related to performances of mechanical systems such as fuel effi- 

ciency, pollution and transportation costs, an accurate prediction 

of the plate STL is essential. 

Previously, analytical and numerical methods have been devel- 

oped to analyze the STL of the plate structure. The analytical meth- 

ods are classified according to the infinite and finite plate models 

[3–9] . For existing method based on the infinite plate model, there 

is no established accurate method to explain STL at the low fre- 

quency range because this model ignores the flexible modes of the 

plate [3–5] . On the other hand, the finite plate model considers 

the influence of the flexible modes by using the mode superposi- 
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tion method [6–9] . However, this method is limited to simple plate 

structures that can express the mode shape in the analytical form. 

There are complicated plate structures in practical applications, but 

analytical expressions of the mode shapes are very complicated. In 

this respect, the analytical sound transmission analysis method has 

limitations in real-life mechanical systems. 

On the other hand, numerical methods based on FEM, BEM 

and SEA could handle complicated plate structures that are limited 

in the analytical methods. However, these conventional numerical 

methods require significant computation costs and modeling ef- 

forts because the methods require a 3D structural-acoustic interac- 

tion model and couplings of the different numerical schemes, such 

as FEM-BEM and FEM-SEA [10–14] . 

As an alternative of the previous sound transmission analysis, 

an efficient and accurate method is developed in this paper. Fol- 

lowing the traditional analytical model, the sound transmission 

phenomenon could be formulated as sound radiation from a vi- 

brating plate that is excited by incident sound [7–9] . Analysis of 

the vibrational response of the plate is straightforward; it follows 

the FEM procedure with no restriction on the plate geometry. Most 

of the computation cost and efforts come from the interaction be- 

tween the plate and ambient air. To alleviate the difficulties in 
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the interaction procedure, we employed an elementary radiator 

approach that is known to be an efficient method for comput- 

ing sound radiation [15–20] . The ERA considers the sound radi- 

ation from a plate as the sum of the sound radiation from the 

large number of radiators mounted on the plate. In this way, the 

radiated acoustic pressure is expressed by a simple algebraic for- 

mulation that is computationally efficient. Taking advantages both 

of the ERA and FEM, a sound transmission analysis method (i.e., 

FE-ERA method) is developed. Compared with the previous sound 

transmission analysis, the FE-ERA method is computationally effi- 

cient because it does not requires the 3D structural-acoustic inter- 

action model or coupling of the different numerical schemes. 

In second part of this paper, a further improvement of the de- 

veloped FE-ERA method is addressed. The computational efficiency 

and accuracy of the FE-ERA method significantly depend on the 

number of radiators. Although a lot of studies have been conducted 

on the ERA in vibro-acoustic applications, the required number of 

radiators for efficiency and accuracy is still unclear [15–20] . In the 

reference [20] , Chandra et al. have stated that the characteristics 

length of the radiators should be much smaller than the minimum 

acoustic wave length for accurate computational results. Following 

this rule, the required number of radiators vary according to the 

frequencies of interest. Thus, this rule is inefficient when the com- 

putation is conducted on the wide range of frequencies. In this re- 

gard, we present a novel criterion for the required number of ra- 

diators. The criterion is based on the radiator error index that is 

derived in order to estimate the accuracy of the considered num- 

ber of radiators. Using the presented criterion, a radiator selection 

method is proposed for adaptively determining the required num- 

ber of radiators. Based on the proposed radiator selection method, 

the efficiency of the FE-ERA method can be further improved. 

This paper consists of 6 sections, including the introduction. 

The background of the sound transmission through a finite plate 

structure is reviewed in Section 2 . The modeling of sound trans- 

mission problem is explained in Section 3 . In Section 4 , the ra- 

diator error index is derived and the radiator selection method is 

explained. Several numerical examples are solved using the FE-ERA 

method in Section 5 . The accuracy and efficiency of the proposed 

method are validated by comparison with the result of the 3D FEM 

model. Finally, Section 6 concludes the paper. 

2. Background: sound transmission through a finite plate 

In this section, the background of sound transmission through 

a finite plate is reviewed. If sound is incident on the finite plate, 

the plate vibrates by the acoustic pressure and the vibrating plate 

reflects and transmits sound by exciting ambient air. Fig. 1 shows 

the sound reflection and transmission phenomena of the plates. 

The sound insulation performance of the plate is evaluated by 

the sound transmission loss ( STL ), which is a ratio between the in- 

cident sound power ( �i ) and transmitted sound power ( �t ) [1,2] . 

The STL is defined as 

ST L = 10 log 10 

�i 

�t 
, 

where , 

�t : T ransmitted Sound P ower, 

�i : Incident Sound P ower. (1) 

The STL of a finite plate is classified by three regions, as shown 

in Fig. 2 . The stiffness controlled region is the low frequency re- 

gion below the 1st natural frequency of the plate. At the stiffness 

controlled region, the STL rapidly decreases as the frequency in- 

creases. The resonance controlled region is the intermediate region 

between the stiffness and mass controlled regions. At the reso- 

nance controlled region, the STL is decreased or increased by the 

resonances and anti-resonances of the plate. The mass controlled 

region is the frequency region above the resonance controlled re- 

gion. At the mass controlled region, the STL is proportional to the 

mass and frequency of incident sound. The STL of the mass con- 

trolled region is governed by the mass law [1,2] . For normally in- 

cident sound the mass law is stated as 

ST L Mass law 

= 20 log 10 

(
1 + 

π f m 

ρ0 c 0 

)
, 

where , 

f : F requency of incident sound [ Hz] , 

m : Area mass density of plate [ kg/ m 

2 ] , 

ρ0 : Mass density of air 
[
kg/ m 

3 
]
, 

c 0 : Speed of sound [ m/s ] . (2) 

Although the mass law is very simple and compact, it is only 

valid for large simple plates because it is derived from the infinite 

and rigid plate assumption [1,2,5] . Therefore, the mass law could 

not accurately predict the STL of general finite plate structures. 

3. Modeling of sound transmission through a finite plate 

In this section, the modeling of sound transmission through a 

finite plate structure is explained in detail. The sound transmission 

of the finite plate is formulated using FEM and ERA. To the best of 

our knowledge, the method combining FEM and ERA is applied to 

the sound transmission problem for the first time in this paper. 

3.1. Vibro-acoustic formulation 

To model sound transmission through a finite plate, the acoustic 

wave with angle θ is considered to be incident on the baffled plate, 

as shown in Fig. 3 . Here, r and r 0 are the position vectors in 3D 

and 2D space on the plate, respectively. 

The equation of the motion of the plate excited by incident 

sound can be expressed as follows [1,2,6–9] , (
D ∇ 

4 − ρs ω 

2 
)
w ( x, y ) 

= 2 exp [ − j ( k x x + k y y ) ] + 

ρ0 ω 

2 

π

∫ 
S 0 

exp ( − jkR ) 

R 

w ( x 0 , y 0 ) d S 0 , 

R ( x, y ) = 

[
( x − x 0 ) 

2 + ( y − y 0 ) 
2 
] 1 

2 (3) 

For the sake of simplicity the derivation of Eq. (3) is omitted 

in this paper. For the detail of derivation procedure, please refer 

to Ref. [7] . In the Eq. (3) , D , ρs , and ∇ 

4 are the bending rigidity 

of the plate, area mass density and Biharmonic operator, respec- 

tively. Variable w is the bending displacement of the plate and ω, 

k, k x , and k y are the angular frequency, wave number, and x and 

y components of the wave vector for incident sound, respectively. 

The notation ρ0 is the mass density of the ambient air, and S 0 is 

the area of the plate. The notation R is the distance between two 

points (i.e., ( x, y ) and ( x 0 , y 0 )) in the space. In Eq. (3) , the left hand 

side terms represent the vibration of the plate and the right hand 

side terms are the excitation force of the incident sound and radi- 

ation resistance of ambient air, respectively. Coefficient 2 in front 

of the excitation force term results from blocked acoustic pressure. 

For a flat plate structure, the transmitted acoustic pressure ( p t ) 

can be expressed using Rayleigh’s integral as 

p t ( x, y ) = −ρ0 ω 

2 

2 π

∫ 
S 0 

exp ( − jkR ) 

R 

w ( x 0 , y 0 ) d S 0 . (4) 

The incident sound power ( �i ), transmitted sound power ( �t ) 

and transmission coefficient ( τ ) are defined as follows 

�i ( θ, ω ) = 

1 

2 

Re 

{ 

∫ 
S 

p i v ∗dS 

} 

= 

cos ( θ ) S 

2 ρ0 c 0 
| p i | 2 , (5) 
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