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a b s t r a c t 

Thermal stress analysis is one of key aspects in mechanical design. Based on the indirect boundary inte- 

gral equation (BIE) and the radial integration method (RIM), this paper develops a boundary-only element 

method for the boundary stress analysis of three-dimensional (3D) static thermoelastic problems. A trans- 

formation system constructed with the normal and two special tangential vectors is used to regularize 

the singularity in the indirect BIE. The RIM is then employed to transform the domain integrals arising 

in both displacement and its derivative integral equations into the equivalent boundary integrals, which 

results in a pure boundary discretized algorithm. Several numerical experiments are provided to verify 

the accuracy and convergence of the present approach. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The boundary element method (BEM), as a powerful numeri- 

cal technique, has been widely applied to the study of thermal 

stresses in three-dimensional (3D) thermoelastic problems [1–5] . 

The BEM transforms the differential equation to the boundary in- 

tegral equation (BIE), which reduces the dimensionality of numer- 

ical problems by one. What’s more, one can obtain more accurate 

numerical results by using the BEM compared with domain-type 

mesh methods, including the finite element method (FEM) and the 

finite difference method (FDM). 

However, as we all know, the conventional BIEs have various 

orders of singular integrals arising from the application of the sin- 

gular fundamental solution. How to accurately calculate singular 

integrals is one of most important issues for the numerical imple- 

mentation of the BIEs [6–8] . The existing techniques for dealing 

with the singular integrals are separated into local and global ap- 

proaches. The former approach directly converts singular integrals 

into non-singular form [9–16] , whereas the later approach avoids 

singular integrals by establishing regularized BIEs [17–25] . The 

scope of this paper is focused on the global approach. Rudolphi 

[17] used two simple solutions to regularize the boundary integral 
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equation of the normal derivative to a harmonic function. Liu and 

Rizzo [18] developed a weakly singular form of the hypersingular 

BIE for 3D elastic wave problems. Chen et al. [19,20] proposed the 

null-field integral equations in conjunction with degenerate ker- 

nels for multi-inclusion problem and stress field around circular 

holes under anti-plane shear. Zhang et al. [21,23] derived the regu- 

larized indirect BIE of displacement gradients for plane elastic and 

orthotropic elastic problems. After then, this indirect BEM strat- 

egy was extended to solve the thin structures for two dimensional 

thermoelastic problems [22] . Recently, Qu et al. [24] presented a 

non-singular indirect BEM formulation for three-dimensional po- 

tential gradient field. Compared with the direct BIEs, the indirect 

method is generally more accurate because its boundary element 

discretization only includes the source field. In addition, the in- 

direct method does not contain the hypersingular integral, which 

indicates that its numerical evaluation is more easy and precise. 

For thermoelastic problems, the direct application of the con- 

ventional BIEs generates a domain integral associated with the 

temperature of the material. To maintain the advantage of the 

boundary-only discretization for the BEM, numerous methods 

[5,26–33] have been developed to transform the domain inte- 

gral into the equivalent boundary integral. The most popular one 

of these existing methods is the dual reciprocity method (DRM) 

[26–28] . The DRM employs a series of basis functions to approx- 

imate the boundary force effect quantities, and then converts the 
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domain integrals into boundary ones by using particular solutions. 

The multiple reciprocity method (MRM) [30,31] is an extension 

of the DRM, which repeatedly utilizes a sequence of high-order 

Laplace operators to complete the transformation from the domain 

integral to the boundary integral. Recently, Gao [5,32,33] developed 

the radial integration method (RIM). This method is based on a 

pure mathematical treatment and therefore can transform any do- 

main integral to the boundary integral in a uniform way. 

In this paper, by combining the indirect BIE and the RIM, 

a boundary-only element method is proposed for the boundary 

stress analysis of 3D static thermoelastic problems. The present 

method employs a transformation system constructed with the 

normal and two special tangential vectors to remove the singu- 

larity in the indirect BIE, and then converts the domain integrals 

arising in both displacement and its derivative integral equations 

into the boundary integrals via the RIM technique. Finally, three 

benchmark examples are provided to verify the derived formu- 

lations. A brief outline of this paper is summarized as follows. 

Section 2 presents the problem definition and basic theorems. 

Section 3 derives the formulations of the regularized indirect BIE. 

Section 4 introduces the details of the RIM. Section 5 provides nu- 

merical examples to verify the present method. In Section 6 , we 

conclude the paper. 

2. Problem definition and basic theorems 

2.1. Problem definition 

The governing equation of three-dimensional (3D) static ther- 

moelastic problems can be expressed in terms of displacements u i 
as 

(λ + G ) u j,i j (x ) + G u i, j j (x ) = (3 λ + 2 G ) αT ,i (x ) , 

i, j = 1 , 2 , 3 , x ∈ �, (1) 

where T is the temperature, G the shear modulus, α the coefficient 

of thermal expansion, � the domain of interesting problems, and 

λ = 2 G 

ν

1 − 2 ν
, (2) 

in which ν is the Poisson’s ratio. 

The Eq. (1) is solved by imposing the following boundary con- 

ditions 

u i = U i ( x ) , x ∈ S, (3) 

or 

σi j n j = T i (x ) , x ∈ S, (4) 

where σ ij is the boundary stress, U i ( x ) and T i ( x ) are known bound- 

ary function, and S is the boundary of the domain �. 

The Kelvin fundamental solution [34,35] of the governing 

Eq. (1) of 3D static thermoelastic problems can be given as 

u 

∗
lk (x , y ) = 

1 

16 πG (1 − ν) r 
[( 3 − 4 ν) δlk + r ,l r ,k ] , l, k = 1 , 2 , 3 , 

(5) 

where x = x ( x 1 , x 2 , x 3 ,) and y = y ( y 1 , y 2 , y 3 ) are the source and field 

points respectively, r denotes the Euclidean distance of x and y , 

r , l =∂ r / ∂ x l ( l=1, 2, 3) represent the derivatives of the distance r 

with respect to x i , and 

δlk = 

{
0 , l � = k, 

1 , l = k. 
(6) 

For the traction, the fundamental solution is expressed as 

p ∗lk (x , y ) = − 1 

8 π(1 − ν) r 2 

×
{

∂r 

∂n 

[(1 −2 ν) δlk + 3 r ,l r ,k ] −(1 − 2 ν)[ r ,l n k − r ,k n l ] 

}
, 

l, k = 1 , 2 , 3 , (7) 

where n = ( n 1 , n 2 , n 3 ) denotes a unit normal vector at point x , and 

∂ r / ∂ n = r , l n l . 

2.2. Basic theorems 

In this section, we will provide some theorems used to de- 

rive the regularized BIEs. The first one is related with a trans- 

form formulation constructed based on the normal vector and 

two special tangential vectors, and the remaining ones are about 

the integral identities of fundamental solutions. We assume that 

n = ( n 1 , n 2 , n 3 ) denotes a unit normal vector at a boundary point 

x, m 

1 = ( n 2 +kn 3 , −n 1 , −kn 1 ) and m 

2 = ( n 2 , −n 1 +n 3 / k , −n 2 / k ) are two 

different vectors in the tangent plane of x , and k is a constant ( k 

� = 0). 

Theorem 1 [24] . Let S be a piecewise smooth surface, g ( x ) be a deriv- 

able function, and ( n, m 

1 , m 

2 ) be a linearly independent set. Then we 

have 

∇g(x ) = a (x ) ∇g(x ) · m 

1 + b (x ) ∇g(x ) · m 

2 + c (x ) ∇g(x ) · n , (8) 

in which ∇ = ( ∂ / ∂ x 1 , ∂ / ∂ x 2 , ∂ / ∂ x 3 ) and a i ( x ), b i ( x ), c i ( x ) ( i = 1, 2, 3) 

respectively are the components of vectors a ( x ), b ( x ), c ( x ) . 

a i ( x ), b i ( x ), c i ( x ) ( i = 1, 2, 3) are given as 

a i (x ) = 

( δi × m 

2 ) · n 

( m 

1 × m 

2 ) · n 

, b i (x ) = 

( m 

1 × δi ) · n 

( m 

1 × m 

2 ) · n 

, c i ( x ) 

= 

( m 

1 × m 

2 ) · δi 

( m 

1 × m 

2 ) · n 

, (9) 

where δi = ( δi 1 , δi 2 , δi 3 ), i=1, 2, 3 . 

Theorem 2 [24] . Assume S is a piecewise smooth surface (open or 

closed), and ˆ x is a point on S. Suppose d = {inf | y −x || x ∈ S } and h = 

| y − ˆ x | . If ψ( x ) ∈ C 0, α( S ) and h / d ≤ K 1 (K 1 is a constant), then there 

holds 

lim 

y → ̂ x 

∫ 
S 

x k − y k 

| x − y | 3 
[
ψ(x ) − ψ( ̂  x ) 

]
dS 

= 

∫ 
S 

x k − ˆ x k ∣∣x − ˆ x 

∣∣3 

[
ψ(x ) − ψ( ̂  x ) 

]
dS k = 1 , 2 , 3 . (10) 

Theorem 3. Assume S is a piecewise smooth surface (i = 1, 2 and l, 

k = 1, 2, 3 ), then we have ∫ 
S 

∂( r ,l r ,k /r) 

∂n (x ) 
dS = −4 πδlk κ(y ) − 2 

∫ 
S 

∂(1 /r) 

∂ x k 
n l (x ) dS , κ(y ) 

= 

{
1 , y ∈ �, 

0 , y ∈ �̄, 
(11) 

∫ 
S 

∂(1 /r) 

∂ m 

i (x ) 
dS = 0 , 

∫ 
S 

∂( r ,l r ,k /r) 

∂ m 

i (x ) 
dS = 0 , y ∈ � ∪ �̄, (12) 

where �̄ = R 3 − (� ∪ S) . 

Proof. First, we set B ε( y ) (or B ε) is a sphere with the radius ε and 

its center at the point y in domain �. Then assume ˆ � = � − � ∩ 

B̄ ε , and S ε =∂B ε . 

As l = k = 1, the left side of Eq. (11) can be given as 

∫ 
S 

∂(r 2 
, 1 /r) 

∂n (x ) 
dS = −2 

∫ 
S 

∂(1 /r) 

∂ x 1 
n 1 (x ) dS 

−3 

∫ 
S 

P d x 2 d x 3 + Qd x 3 d x 1 + Rd x 1 d x 2 , (13) 
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