
ARTICLE IN PRESS 

JID: ADES [m5G; April 26, 2017;14:58 ] 

Advances in Engineering Software 0 0 0 (2017) 1–8 

Contents lists available at ScienceDirect 

Advances in Engineering Software 

journal homepage: www.elsevier.com/locate/advengsoft 

Type oriented parallel programming for Exascale 

Nick Brown 

Edinburgh Parallel Computing Centre, James Clerk Maxwell Building, Kings Buildings, Edinburgh, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 24 April 2015 

Revised 20 March 2017 

Accepted 20 April 2017 

Available online xxx 

Keywords: 

Type oriented programming 

Mesham 

Parallel programming 

Type systems 

Asynchronous Jacobi 

PGAS 

a b s t r a c t 

Whilst there have been great advances in HPC hardware and software in recent years, the languages and 

models that we use to program these machines have remained much more static. This is not from a lack 

of effort, but instead by virtue of the fact that the foundation that many programming languages are 

built on is not sufficient for the level of expressivity required for parallel work. The result is an implicit 

trade-off between programmability and performance which is made worse due to the fact that, whilst 

many scientific users are experts within their own fields, they are not HPC experts. 

Type oriented programming looks to address this by encoding the complexity of a language via the 

type system. Most of the language functionality is contained within a loosely coupled type library that 

can be flexibly used to control many aspects such as parallelism. Due to the high level nature of this 

approach there is much information available during compilation which can be used for optimisation 

and, in the absence of type information, the compiler can apply sensible default options thus supporting 

both the expert programmer and novice alike. 

We demonstrate that, at no performance or scalability penalty when running on up to 8196 cores of 

a Cray XE6 system, codes written in this type oriented manner provide improved programmability. The 

programmer is able to write simple, implicit parallel, HPC code at a high level and then explicitly tune 

by adding additional type information if required. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The difficulty of programming has been a challenge to parallel 

computing over the past several decades [1] and as the commu- 

nity moves towards Exascale, where it is likely that one will take 

advantage of more and more cores to solve problems, then this 

will become more severe. It is critical that end programmers, who 

might not be HPC experts, can write their code in an abstract yet 

powerful and consistent manner if they are to take full advantage 

of future super computers. 

Parallel programming models largely fall into two categories: 

explicit parallelism and implicit parallelism. When using explicit 

parallelism the programmer must handle all details of data allo- 

cation, partition, distribution, communication and synchronization 

which is notoriously difficult. Even to the few experts explicit par- 

allel programs, such as those using MPI, are low-level and difficult 

to develop, test, debug and modify. Implicitly parallel languages, 

which are simpler, rely on more hidden optimization - the com- 

piler essentially makes decisions for the end programmer. However 

it is not always easy to automatically make the right decisions for 

parallelism. For example, the initial partition and distribution of an 

array can significantly affect the performance of later computation 

E-mail address: nick.brown@ed.ac.uk 

and different parts of a code may require the same array to be 

partitioned in different directions. This is why most parallel codes 

currently used in real applications are hand-written and explicitly 

parallel - because hardware and compiler technology is not yet ad- 

vanced enough to guarantee scalable and performant implicit par- 

allelism. 

This paper proposes a trade off between explicit parallelism and 

implicit parallelism. Type oriented programming addresses the is- 

sue by providing the options to the end programmers to choose 

between explicit and implicit parallelism. The approach is to de- 

sign new types governing parallelism where a programmer may 

choose to use these types or may choose not to use them. These 

types impose additional information that guides the compiler to 

generate the required parallel code or conduct optimization and 

apply some default parallelism method when detailed information 

is missing. In short these types for parallelism are issued by the 

programmer to instruct the compiler to perform the expected ac- 

tions in static analysis and code generation. They are predefined 

by expert HPC programmers in a type library and different target 

communication methods correspond to different combinations of 

types. 

In [2] we introduced the idea of type oriented programming 

and this paper focuses on applying these ideas to solve some of the 

challenges associated with Exascale and studying the performance 

http://dx.doi.org/10.1016/j.advengsoft.2017.04.006 

0965-9978/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: N. Brown, Type oriented parallel programming for Exascale, Advances in Engineering Software (2017), 

http://dx.doi.org/10.1016/j.advengsoft.2017.04.006 

http://dx.doi.org/10.1016/j.advengsoft.2017.04.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
mailto:nick.brown@ed.ac.uk
http://dx.doi.org/10.1016/j.advengsoft.2017.04.006
http://dx.doi.org/10.1016/j.advengsoft.2017.04.006


2 N. Brown / Advances in Engineering Software 0 0 0 (2017) 1–8 

ARTICLE IN PRESS 

JID: ADES [m5G; April 26, 2017;14:58 ] 

and scaling behaviour at far greater core counts. As one moves to- 

wards Exascale, where the programmer must make efficient use of 

a vast amount of resource, scalability issues will force the com- 

mon algorithms for solving problems to be reconsidered. The lack 

of suitable programming model will limit the scientific benefit that 

one can gain from this new generation of machine. Jacobi’s algo- 

rithm is an example of a difficulty the community might face - 

whilst using asynchronous halo swap communication between it- 

erations can help improve both scability and performance at large 

core counts it also requires far more complex code to be written. 

In this paper we introduce the type oriented parallel programming 

language, Mesham, and using this language implement versions of 

Jacobi’s algorithm using synchronous and asynchronous commu- 

nication methods. We consider the programming benefits of ex- 

pressing asynchronous Jacobi’s algorithm in a type oriented man- 

ner and demonstrate performance and scalability of our approach 

with runs using up to 8196 cores on a Cray XE6. 

The rest of the paper is organised as follows: Section 2 reviews 

the background to the problem and in Section 3 we present our 

proposed solution. Section 4 introduces the parallel programming 

language, Mesham, which is used in Section 5 where we consider 

both the programmability and performance characteristics of our 

approach when applied to a case study. Section 5 draws some con- 

clusions and considers further work. 

2. Background 

It is widely accepted that writing parallel codes is far more 

complex than their sequential counterparts. Factors such as data 

decomposition, communication and synchronisation add additional 

complexity that HPC users, who are often not programming ex- 

perts, can find difficult to handle. Decisions made early on, such as 

the method of data distribution, might be naive in the benefit of 

hindsight but can prove very difficult to change once the code has 

matured. When it comes to writing parallel codes, there is a trade 

off between languages. Current practice is to write parallel codes 

using some lower level sequential language such as C or Fortran 

combined with a communications library such as MPI or OpenMP. 

This existing approach requires the programmer to construct their 

code whilst considering many levels of abstraction ranging from 

the high level parallel system all the way down to complex low 

level sequential details. Other parallel programming solutions place 

more emphasis upon simplicity and maintainability; however the 

programmer can often be stuck with some default choices which 

impacts performance and scalability. This illustrates the fundamen- 

tal trade-off in many parallel programming solutions; those solu- 

tions which provide detailed control where the programmer can 

tune every aspect of parallelism to achieve good performance and 

scalability result in complex, difficult to maintain programs and 

those languages which abstract the programmer sufficiently to pro- 

mote simplicity but at the expense of scalability and performance. 

As we move towards Exascale, and one harnesses more and 

more processors to solve a problem, this challenge is likely to be- 

come even more acute. It will be very difficult to use those ex- 

isting languages which allow for high levels of control, and those 

that make decisions and abstraction in the name of simplicity will 

likely scale poorly. 

2.1. Type oriented programming 

A large subset of languages follow the syntax Type Variable- 

name , such as int a or float b , where the programmer declares a 

variable. Such statements affect both the static and dynamic se- 

mantics because the compiler can perform analysis and optimisa- 

tion (such as type checking) and at runtime the variable has spe- 

cific attributes such as size and format. It can be thought that the 

programmer provides information, to the compiler, via the type. 

However, there is only so much that one single type can reveal, 

and so languages often include numerous keywords in order to al- 

low for the programmer to express additional information. 

Taking the C programming language as an example, in order to 

declare a variable m to be a character in read only memory which 

is accessed many times (so the compiler might consider using a 

register) and might be changed externally in unpredictable ways, 

the code volatile register const char m is used. Where char is the 

type and volatile, register and const are inbuilt language keywords. 

Whilst this keyword heavy approach works well for sequential lan- 

guages, in the parallel programming domain there are potentially 

many more attributes which might need to be associated; such as 

where the data is located, how it is communicated and any restric- 

tions placed upon it. Representing all this additional information 

via keywords would not only bloat the language, but could also 

introduce inconsistencies when multiple keywords were used to- 

gether with potentially conflicting behaviours. 

As first introduced in relation to the PGAS memory model in 

[2] , the type oriented approach is for the programmer to encode 

all variable information via the type system by combining different 

types together to form the overall meaning. For instance, volatile 

register const char m is instead var m:Char::const::register::volatile , 

where var m declares the variable, the operator : specifies the type 

and the operator :: combines types together. In this case, a type 

chain is formed by combining the types Char, const, register and 

volatile . Precedence is from right to left, so for example, the read 

only properties of the const type override the default read & write 

properties of Char . It should be noted that some type coercions, 

such as Int::Char are meaningless and so rules exist within each 

type to govern which combinations are allowed. It is also possible 

to associate arbitrary information with each type, which might be 

further type chains, and the type itself will give meaning to this 

data. To illustrate the point, if a programmer wished to suggest 

which register to use for variable m then they might express reg- 

ister[“ax”] where the type itself provides the context of the string 

argument - in this case suggesting which register to use. 

Once set in the variable declaration, the programmer can mod- 

ify the semantics of a variable by changing its type later in code. 

Referring to the previous example, the programmer may decide to 

set the variable to be writable once again using the writable type. 

This can be done either permanently from that point onwards us- 

ing a:a::writable (which appends the writable type to variable a ’s 

type chain) or for a specific expression only via (a :: writable): = 99 . 

In such an example, if the programmer were to attempt to write 

to the constant variable before the writable type is applied then 

an error would result. In our current version of the language types 

must be determined at compile time but it can be very difficult or 

impossible for the language to support this flexible modification of 

types and the compiler to dynamically determine the type. For in- 

stance a conditional might rely on some user input and based upon 

this set the type of a variable accordingly. To ensure that types are 

known at compile time, typing follows lexical scoping rules and 

on exit from a block of code the type of a variable, if it has been 

modified, reverts back to what the type was when it entered that 

block. 

The type oriented approach provides a number of advantages: 

1. Opportunities for optimisation - Due to the programmer spec- 

ifying their code in such a high level manner the compiler can 

obtain a much more complete view of the system and apply 

optimisation. The types themselves are written by domain ex- 

perts which can often result in far more performant, consistent 

behaviour. 

2. Choice between explicit and implicit programming - In the 

absence of type information the compiler will apply sensible, 

Please cite this article as: N. Brown, Type oriented parallel programming for Exascale, Advances in Engineering Software (2017), 

http://dx.doi.org/10.1016/j.advengsoft.2017.04.006 

http://dx.doi.org/10.1016/j.advengsoft.2017.04.006


Download English Version:

https://daneshyari.com/en/article/4977923

Download Persian Version:

https://daneshyari.com/article/4977923

Daneshyari.com

https://daneshyari.com/en/article/4977923
https://daneshyari.com/article/4977923
https://daneshyari.com

