
ARTICLE IN PRESS 

JID: ADES [m5G; April 6, 2017;20:55 ] 

Advances in Engineering Software 0 0 0 (2017) 1–21 

Contents lists available at ScienceDirect 

Advances in Engineering Software 

journal homepage: www.elsevier.com/locate/advengsoft 

Coupling parallel adaptive mesh refinement with a nonoverlapping 

domain decomposition solver 

Pavel K ̊us a , b , ∗, Jakub Šístek 

a , c 

a Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Prague, Czech Republic 
b Max Planck Computing and Data Facility, Max Planck Institute, Gießenbachstraße 2, 85748 Garching bei München, Germany 
c School of Mathematics, The University of Manchester, Manchester, M13 9PL, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 31 October 2016 

Revised 10 March 2017 

Accepted 26 March 2017 

Available online xxx 

Keywords: 

Adaptive mesh refinement 

Parallel algorithms 

Domain decomposition 

BDDC 

AMR 

a b s t r a c t 

We study the effect of adaptive mesh refinement on a parallel domain decomposition solver of a lin- 

ear system of algebraic equations. These concepts need to be combined within a parallel adaptive finite 

element software. A prototype implementation is presented for this purpose. It uses adaptive mesh re- 

finement with one level of hanging nodes. Two and three-level versions of the Balancing Domain Decom- 

position based on Constraints (BDDC) method are used to solve the arising system of algebraic equations. 

The basic concepts are recalled and components necessary for the combination are studied in detail. Of 

particular interest is the effect of disconnected subdomains, a typical output of the employed mesh par- 

titioning based on space-filling curves, on the convergence and solution time of the BDDC method. It is 

demonstrated using a large set of experiments that while both refined meshes and disconnected subdo- 

mains have a negative effect on the convergence of BDDC, the number of iterations remains acceptable. 

In addition, scalability of the three-level BDDC solver remains good on up to a few thousands of proces- 

sor cores. The largest presented problem using adaptive mesh refinement has over 10 9 unknowns and is 

solved on 2048 cores. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Adaptive mesh refinement (AMR) is a well-established tech- 

nique in the framework of the finite element method (FEM). Its 

use in combination with massively parallel calculations is, how- 

ever, still rather limited. This should not be surprising, since devel- 

oping an efficient parallel code employing a general AMR is highly 

nontrivial and requires meeting several contradicting requirements. 

In particular, keeping the load of CPU cores balanced is the main 

issue during the parallel process. Other issues involve management 

of hanging nodes (or enforced refinements) and a choice of a suit- 

able algebraic solver. 

In this contribution, we present an implementation of a mas- 

sively parallel AMR code. It is coupled to the parallel linear system 

solver based on nonoverlapping domain decomposition method. 

The impact of AMR on the solver is evaluated. A subsequent goal 

of the paper is convincing the reader that hanging nodes treatment 

and its implementation can be relatively easy and straightforward, 

as opposed to the general feeling that nonconforming meshes are 

∗ Corresponding author. 

E-mail addresses: kus@math.cas.cz (P. K ̊us), sistek@math.cas.cz (J. Šístek). 

best to be avoided. The simplicity is achieved by allowing only so 

called first-level hanging nodes and equal order elements. 

The goal of an AMR strategy is to improve the approximate 

solution in those parts of the domain, where the behaviour of 

the exact solution is complex, such as close to singularities or 

within boundary and internal layers. The structure of the mesh 

becomes complicated while the degrees of freedom are efficiently 

distributed and their number is kept low. On the other hand, rel- 

atively simple, often structured, globally fine meshes are typically 

preferred in massively parallel codes, resulting in very large num- 

ber of degrees of freedom. 

An integral part of parallel computations is partitioning the 

computational mesh into subdomains. The strategy employed in 

our work leads to parts with approximately equal number of el- 

ements. Although this requirement may seem rather simple, parti- 

tioning adaptively refined meshes in a scalable way on thousands 

of CPU cores is still a challenging task. 

Perhaps the simplest strategy suitable for structured meshes is 

dividing them into geometrically regular subdomains. However, it 

cannot be used for adaptively refined subdomains, where the num- 

ber of elements in different regions can differ largely, leading to 

huge load imbalance. A widely adopted alternative is translating 

the problem of dividing the mesh into partitioning the graph of 

http://dx.doi.org/10.1016/j.advengsoft.2017.03.012 

0965-9978/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: P. K ̊us, J. Šístek, Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition 

solver, Advances in Engineering Software (2017), http://dx.doi.org/10.1016/j.advengsoft.2017.03.012 

http://dx.doi.org/10.1016/j.advengsoft.2017.03.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
mailto:kus@math.cas.cz
mailto:sistek@math.cas.cz
http://dx.doi.org/10.1016/j.advengsoft.2017.03.012
http://dx.doi.org/10.1016/j.advengsoft.2017.03.012


2 P. K ̊us, J. Šístek / Advances in Engineering Software 0 0 0 (2017) 1–21 

ARTICLE IN PRESS 

JID: ADES [m5G; April 6, 2017;20:55 ] 

the mesh. The graph partitioning is then performed by standard 

libraries, such as METIS [19] or ParMETIS [20] . While the latter is 

meant for parallel repartitioning, the approach is not scalable to 

thousands of cores as required by massively parallel adaptive sim- 

ulations. 

A considerably simpler approach is based on partitioning space- 

filling curves, as it is done in the p4est library [10,17] , one of 

the building blocks of our implementation. Its scalability has been 

tested in [10] up to hundreds of thousands of cores, and its use for 

development of a parallel FEM library deal.II is described in [5] . 

The authors use a globally assembled system matrix distributed 

by rows. The main difference of our work seems to be the use 

of the subassembled system matrix, i.e. matrix only assembled 

subdomain-wise, as it is common to nonoverlapping domain de- 

composition methods. An interface degree of freedom is present in 

two or more subdomains, and its assembly is not finalised over the 

interface. The use of this matrix format naturally avoids partition- 

ing of matrix rows of the fully assembled matrix and thus circum- 

vents the issue with the assembly at hanging nodes in the vicinity 

of interface described in [10] . 

On the other hand, properties of subdomains play a more im- 

portant role in our approach. The drawback of the use of space- 

filling curves for mesh partitioning is the poor shape of subdo- 

mains. Moreover, disconnected subdomains composed of several 

independent components are common. One of our goals is to in- 

vestigate how this type of subdomains affects the performance of 

the nonoverlapping domain decomposition solver. 

For the solution of the system of equations, we use the Balanc- 

ing Domain Decomposition based on Constraints (BDDC) method 

[14] and its extension to multiple levels, the Multilevel BDDC 

[28,39] . The potential of the multilevel method to scale to 500 

thousand cores was recently demonstrated in [4] . Another parallel 

implementation of multilevel BDDC is available in our open-source 

BDDCML library [35] , the second building block of our implemen- 

tation. 

A crucial role in BDDC is played by constraints which en- 

force continuity of suitably defined coarse degrees of freedom across 

subdomains. Typically, these are point values at selected nodes 

called corners or averages over faces and/or edges among neigh- 

bouring subdomains. If a sufficient number of constraints is prop- 

erly selected, the local Neumann problems on subdomains become 

uniquely solvable. 

The strategy for handling disconnected subdomains employed 

in BDDCML is described. In fact, it is quite simple: a local graph 

of computational mesh is created for each subdomain and its con- 

tinuity is analyzed. If more graph components are detected, each 

of them is treated separately during the selection of constraints. 

While this may lead to a certain load imbalance due to a sudden 

increase of number of constraints for disconnected subdomains, 

the principal amount of work, which is given by the size of each 

subdomain, remains unchanged. This effect is studied in detail in 

our paper. 

The rest of the paper is organized as follows. In Section 2 , we 

review adaptive mesh refinement strategies and describe a sim- 

ple approach to dealing with hanging nodes. The BDDC method is 

recalled in Section 3 with the emphasis on accommodating dis- 

connected subdomains within the method. Section 4 is devoted 

to combination of these concepts and discussion of specific is- 

sues arising in coupling AMR with a parallel BDDC solver. Finally, 

numerical results testing the developed implementation are pre- 

sented in Section 5 , and conclusions are drawn in Section 6 . 

2. Adaptive meshes and hanging nodes 

The purpose of mesh adaptivity is to ensure precise resolution 

of details in troublesome areas of the domain while keeping the 

overall size of the resulting system within reasonable bounds. This 

often cannot be achieved by uniform refinements. The price to 

pay are several complications of the discretisation algorithm which 

have to be addressed. This is particularly true in the case of adap- 

tivity in parallel setting as will be further elaborated in Section 4 . 

There is, however, one particular issue, which is rather challenging 

even in the case of serial calculation: a proper treatment of the so 

called hanging nodes . These nodes appear when several smaller el- 

ements are adjacent to an edge (in 2D) or a face (in 3D) of a larger 

element, see Fig. 1 . It is especially demanding when higher-order 

elements are used. Various techniques have been developed and 

used in different settings in the case of serial calculations. How- 

ever, one has to be careful when dealing with adaptivity in parallel 

where hanging nodes might appear at subdomain interface. 

Hanging nodes present a complication of the numerical scheme, 

and many authors proposed various techniques to avoid them from 

the beginning by introducing extra refinements. These enforced re- 

finements are not necessary for a better precision of the solution 

but have the only purpose of keeping the mesh regular, i.e. face-to- 

face. Let us just mention the red–green algorithm, although many 

others exist. Nevertheless, these algorithms bring other disadvan- 

tages, and it seems that most approaches towards mesh adaptivity 

involve hanging nodes nowadays. The presence of hanging nodes is 

quite simply manageable when a discontinuous approximation, e.g. 

the discontinuous Galerkin method, is used. This can be employed 

for development of hybrid continuous-discontinuous methods as in 

[3] , where discontinuous approximation is used at hanging nodes. 

If continuous approximation is used, the use of arbitrary-level 

hanging nodes (see e.g. [33] for 2-D and [23] for 3-D results or re- 

cent works [40] or [36] for alternative approaches) becomes tech- 

nically somewhat difficult. The level here corresponds to the num- 

ber of subsequent refinements at one side of an element face that 

were needed for creation of the hanging node, see Fig. 1 for first 

and second level hanging nodes. The advantage of the arbitrary- 

level approach is that there are no additional refinements enforced 

by mesh regularity reasons. It leads, however, to a substantial al- 

gorithmic complexity due to the non-local character of constraints 

on continuity at higher-level hanging nodes and their propagation 

through the mesh [23] . This holds especially in 3D. For this reason, 

most authors resort to the use of first-level hanging nodes only 

(see, e.g., [13] ), which seems to be the most feasible solution and 

which is used in our current work as well. 

In the rest of this section, we describe in more detail the way 

hanging nodes are treated in our solver. The ideas are not new, but 

we recall them for the sake of completeness and in a way suitable 

for a subsequent coupling with nonoverlapping domain decompo- 

sition. We proceed by imposing three important restrictions, for- 

mulated as assumptions on the mesh. 

Assumption 1 (2:1 mesh regularity) . Only first-level hanging 

nodes are present in the adaptive meshes. 

This important assumption means that no more than two (four) 

other elements can be adjacent to an element edge (face) in 2D 

(3D), respectively, see Fig. 1 . Consequently, a limited number of en- 

forced refinements can appear in order to fulfill this assumption. 

This restriction is used by a majority of authors as a reasonable 

trade-off between performance gain and complexity of implemen- 

tation. 

Assumption 2 (Equal order of elements) . Finite elements have a 

uniform polynomial order. 

This restriction rules out the superior hp -adaptivity and leaves 

us with the h -adaptivity, however including powerful higher-order 

approximations. 

Please cite this article as: P. K ̊us, J. Šístek, Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition 

solver, Advances in Engineering Software (2017), http://dx.doi.org/10.1016/j.advengsoft.2017.03.012 

http://dx.doi.org/10.1016/j.advengsoft.2017.03.012


Download English Version:

https://daneshyari.com/en/article/4977934

Download Persian Version:

https://daneshyari.com/article/4977934

Daneshyari.com

https://daneshyari.com/en/article/4977934
https://daneshyari.com/article/4977934
https://daneshyari.com

