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a b s t r a c t 

The subject of the paper is to investigate a new way for avoiding the development of checkerboard pat- 

terns in structural topology optimization, using an additional in-plane rotational freedom. The efficiency 

of a few, from the many existing formulations, with differing complexity are put into comparison, such 

as the standard 4 noded bilinear element, the Allman-type solution, the shell element from SAP20 0 0 and 

finally an element constructed on the basis of micropolar theory. Since the emergence of checkerboarded 

regions is a general phenomenon, the optimization problem is as simple as possible, being a weight 

minimization with a compliance constraint, solved with the optimality criteria method and a FEM dis- 

cretization of the design domain. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The different types of numerical instabilities are well summa- 

rized in the article of Sigmund and Petersson [1] , from which the 

focus is laid on the checkerboard pattern. The two examined case 

studies and the problem are illustrated in Figs. 1 and 2 . It can 

be seen, that the domain has subdomains consisting of alternating 

solid and void elements. This pattern is generally due to mathe- 

matical instability [2,3] , producing artificial stiffness, since this pat- 

tern does not correspond to an optimal distribution of material. 

Several papers investigated the problem and gave suggestions for 

the solution [4–8] , such as smoothing, application of higher-order 

finite elements, patches, the Poulsen scheme, filtering, polygonal fi- 

nite elements, the ground structure approach, etc. Our idea is that 

since classical continuum mechanics does not incorporate any in- 

trinsic material length-scale parameter, it may be insufficient for 

the description of certain phenomena, such as a checkerboard-like 

material distribution above a given length-scale, because these mi- 

crostructural regions bring non-classical behavior. The fundamental 

assumption of this research is that the erroneous stiffness is due to the 

failure of the classical continuum-mechanical model, when applied to 

these types of structures. As a remedy we suggest a novel approach, 

which is based on the application of drilling degrees of freedom, 

thus being strongly related to structural optimization problems. A 

natural way to incorporate such an additional DOF is the appli- 
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cation of a higher order continuum theory, such as the Cosserat- 

theory. Besides that, we have investigated other ways, which are 

introduced through the sections of the paper, with increasing com- 

plexity. We expect, that the mere presence of in-plane rotations 

will eliminate the development of erroneous regions. Notedly, the 

existence of checkerboarded regions won’t be a problem anymore, 

since the stiffness properties of that is reflected correctly by the 

theory. As far as possible, we aim to find finite elements with 

higher performance, where the application does not come with 

serious extra computational cost. Therefore we wish to find solu- 

tions where a general element remains four-noded and uses simple 

shape functions, as illustrated in Fig. 3 . 

The mathematical problem to be solved can be stated in the 

following form: 

P 1 = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

min t 1 , ... t n V (t ) = 

∑ n 
i =1 A i t i (a) 

s.t. u 

T K (t ) u ≤ C 0 (b) 

K (t ) u = f (c) 

t i ∈ { 0 , t 0 } ∀ i (d) 

(1) 

where V ( t ) is the objective function representing the total volume, 

A i denotes the area, t i the thickness of the ith element of a finite 

element discretization, t 0 is the initial value for the thickness of 

the sheet, furthermore K ( t ), u and f are the stiffness matrix, the 

nodal displacement and force vectors of the structure, respectively. 

Since each finite element has the same area A i , thus A i = A ∀ i, we 

simply refer to them as A in the following expressions. The term C 0 
is an upper bound on the compliance of the linear system, which 

is necessary for the problem to be well posed. To avoid integer 
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Fig. 1. The checkerboard phenomenon 1. 

Fig. 2. The checkerboard phenomenon 2. 

programming, we applied the popular power-low approach with 

a thickness penalization, where the intermediate thickness values 

are given by the initial thickness t 0 raised to some power p larger 

than one. As explained in detail following later in this section, the 

penalty parameter starts with the value 1.0, resembling the vari- 

able thickness shett problem, then it is gradually increased until 

reaching a maximum value. The continuous-variable problem has 

the following statement: 

P 2 = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

min t 1 , ... t n V (t ) 
�= A 

∑ n 
i =1 t 

1 /p 
i 

(a) 

s.t. c 1 
�= u 

T K (t ) u − C 0 ≤ 0 (b) 

c 2 
�= K (t ) u − f = 0 (c) 

t min ≤ t i ≤ t 0 ∀ i (d) 

(2) 

Fig. 3. Standard bilinear 4-node element. 

Eqs. (2b) and (2c) are constraints on the design and the state vari- 

ables, the latter one being the discrete state equation from a finite 

element solution of the governing equations of the 2D continuum. 

The constant t min is a small number substituting zero, inserted to 

prevent singularity. The Lagrangian function for P 2 is: 

�(t , λ) = A 

n ∑ 

i =1 

t 1 /p 
i 

− λ(u 

T K (t ) u − C 0 ) , (3) 

where λ is the Lagrange multiplier for the constraint. The neces- 

sary conditions for a local minimum (Karush–Kuhn–Tucker condi- 

tions) are: 

∇ t �(t , λ) = 0 (4a) 

c 1 ≤ 0 (4b) 

c 2 = 0 (4c) 

λ> 0 (4d) 

λ c 1 = 0 (4e) 

After constructing the Lagrangian function and applying Eqs. 

(4) , the following formulas are obtained for the Lagrange- 

multiplier ( λ) and the design variables ( t i ): 

λ = 

A 

∑ n 
i =1 t 

1 /p 
i 

C 0 p 
, (5) 

t i = 

λ p C i 
A 

∀ i, (6) 

where C i is the compliance of the i th element. The design vari- 

ables, which satisfy the necessary conditions of a local minimizer 

are found by alternating Eqs. (5) and (6) . The resulting iterational 

procedure can be classified as an alternating variables method and 

the steps are listed in Algorithm 1 (left arrow means assignment 

to the variable on the left-hand side). 

In fact this heuristic iteration leads to a fix point type updating 

scheme, very similar to the one by Bendsøe, published in [9] . 

By penalizing not the density, but the thickness, intermediate 

values also have a physical interpretation. Furthermore, a complete 

justification of the power-law approach is given in [10] . According 

to (1d), the feasible region is bounded, and from the continuity of 

both the objective and the constraint functions the feasible region 

is closed. Furthermore, since problem P 1 is posed in finite dimen- 

sion, it has a solution in general. On the other hand, the statement 

of problem P 2 encompasses a nonconvex objective function, when 

p > 1. In this case, the necessary conditions of a local minimizer 

only ensure that the resulting algorithm converges to a nearby sta- 

tionary point, representing a better design. 

1.1. The drilling degree of freedom 

In the recent two decades there has been a great interest in 

elements possessing in-plane rotational degrees of freedom (also 
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