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a b s t r a c t 

Maximizing the fundamental eigenfrequency of vibration is an important topic in structural topology 

optimization. Previous studies of such a topology optimization problem should always be cautious of 

the “artificial localized mode” as it makes the optimization fail. In the present work, a level set based 

topology optimization is proposed to address such an issue. The finite element analysis is conducted 

on the actual structure by using a body-fitted mesh and without artificial weak material, thus localized 

mode that conventionally arises due to low-density region is prevented. In the present study, attention is 

turned to localized mode occurred gradually during the optimization. Such kind of localized mode results 

from the emergence of isolated area or cracked structure member produced by topological changes. A 

mode recognition technique based on the volume ratio of vibration-free region to the entire structure is 

proposed to identify such localized mode. Numerical examples of 2D structures are investigated. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Structural topology optimization of the present study addresses 

the design of structure to improve its vibration performance. 

In the optimization, frequencies or frequency-based features are 

the essential concerns, and they are either treated as constraints 

[1–3] or as the objective function [4–6] . In each iteration of opti- 

mization, dynamic behavior of a design, for instance frequencies or 

mode shapes, is obtained through solving an eigenvalue problem, 

and then the design is improved based on the results of sensitivity 

analysis. In the end, the optimization results in a structure that 

has better dynamic performance. 

Although much success has been achieved, a difficulty exists in 

the optimization of eigenfrequencies, i.e., the first eigenfrequency 

given by the FEA may belong to localized vibration of low-density 

regions mimicking void in the reference domain but not belong 

to the actual structure because the low-density regions are much 

more flexible than the actual structure [7] . This phenomenon is 

referred to as “artificial localized modes” . In such circumstances, 

optimization of the nominal first eigenfrequency of an artificial 

localized mode is meaningless. Similar difficulties will be also 

encountered when one deals with other eigenvalue optimization 
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problems, for instance optimization of buckling-sensitive structure 

[8,9] . 

Many efforts have been made to address the issue mentioned 

above. One idea is to remove elements with minimum density 

from the reference domain, but re-appearance of material in the 

same locations becomes impossible [10] . Tenek and Hagiwara 

[5] set a minimum density threshold to avoid localized modes, but 

the optimization problem was changed from topology optimization 

to reinforcement optimization. Pedersen [7] investigated how the 

ratio between the penalization of mass and stiffness impacts the 

calculation of eigenvalue. Pederson proposed to: (1) linearize the 

ratio between the penalization of stiffness and mass in low density 

areas while maintaining the power law relation in other regions; 

(2) ignore the nodes in low density areas in the FEA. Tcherniak 

[11] set the mass of low density areas to zero, but this resulted 

in an overestimation of the corresponding eigenfrequency. Du 

and Olhoff [12] followed the above idea and proposed continuous 

interpolation model of mass matrix in low density area to avoid 

numerical singularity. Bogomolny [13] proposed to multiply the 

stiffness matrix by a polynomial, which consisted of penalized and 

non-penalized parts. Other interpolation model aiming at tailoring 

the ratio of the penalization to get localized-mode-free design 

can also be found in Bruggi and Venini [14] , Huang et al. [15] , 

and Rubio et al. [16] . In the above mentioned studies, through 

tuning the penalization of mass and stiffness in low density 

regions, the eigenfrequencies of localized modes were raised to be 
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much higher than the first eigenfrequency of the actual structure. 

Therefore, these methods perfectly solved the aforementioned 

difficulties in the optimization of the first eigenfrequency. 

The evolutionary structural optimization (ESO) method [17] and 

its modified version, bi-directional ESO (BESO) method [18] , have 

also been used for the optimization of dynamic problems. In this 

method, the structure is modeled with finite elements, and several 

elements are removed or added after each eigenvalue analysis to 

optimize the frequency according to the contribution factor or 

sensitivity number [19–21] . Zhu et al. [22] extended the studies 

to use element replacement method to maximize the structural 

stiffness or natural frequency. As elements are removed from the 

design domain directly, artificial localized modes will not arise in 

hard-kill ESO/BESO method. 

Recently, Guo et al. [23] proposed a computational frame- 

work for structural topology optimization based on the concept 

of moving morphable components (MMC). It finds the optimal 

structure topology by optimizing the shapes, length, thicknesses, 

orientations and layout of a set of morphable components directly 

[24] , and it has been proved in solving problems with compliance 

and compliant mechanism design [25–27] . This method has the 

potential to avoid artificial localized modes and needs to be 

investigated in future work. 

The level set method has also been used for the optimization of 

eigenfrequency. Osher and Santosa [28] studied the optimization 

of the first eigenvalue and spectral gap of a two-material drum. 

Allaire and Jouve [29] presented a solution to the maximization 

of the first eigenvalue in the form of Rayleigh quotient. Gournay 

[30] proposed a Hilbertian velocity extension method to improve 

the convergence rate and applied it to eigenvalue maximization. In 

our previous study, the level set method was used to maximize the 

simple and repeated first eigenvalue [31] . In the above studies, the 

artificial weak material was used to mimic void in the reference 

domain, and as aforementioned its material properties need to be 

carefully tailored, otherwise localized mode may appear. 

Although the artificial weak material is used in conventional 

level set based topology optimizations, it is merely a convenient 

tool to simplify the FEA and is not indispensable. In this article, a 

level set based topology optimization problem is formulated in a 

"strict 0-1" manner by removing the artificial weak material and 

conducting the FEA with a body-fitted mesh, as proposed in our 

previous study [32] . Therefore, the localized modes due to the 

artificial weak material are essentially prevented. 

However, localized modes still may arise during the course 

of optimization. For instance, an intermediate design containing 

isolated areas has several localized rigid-body modes whose 

eigenfrequencies are zero. There are two possible origins of such 

localized modes. First, drastic topological changes of a structure 

happening during the optimization may result in isolated area 

or cracked structure member. Second, similar situation will also 

be encountered when topological changes or local damage are 

intentionally created during the optimization, for instance when 

considering fail-safe or robust optimization aiming at a robust de- 

sign whose performance is not disproportionately affected by local 

damage or uncertainty [33–35] . The localized modes of isolated 

area or cracked structure member with low eigenfrequency make 

the optimization discontinuous and meaningless. The method 

proposed in the present study addresses such localized modes by 

means of a mode recognition method. 

The paper is organized as follows. Section 2.1 describes max- 

imization of the first eigenfrequency of continuum structure and 

sensitivity analysis. Section 2.2 discusses localized modes arising 

in optimization process. Section 3 describes the FEA of structural 

vibration with body-fitted mesh and introduces mode recognition 

method to eliminate localized modes. Section 4 briefly introduces 

the level set method. Section 5 gives numerical examples and 

discussions. Section 6 concludes the paper. 

2. Optimization problem 

2.1. Problem description and sensitivity analysis 

A structure is represented as an open bounded set �⊂R d ( d 

= 2or 3), and the boundary of structure comprises two disjoint 

segments, i.e. 

∂� = �N ∪ �D 

where a Dirichlet boundary condition is imposed on �D , a 

Neumann boundary condition on �N . During optimization all 

admissible designs should stay in a fixed reference domain 

D ⊂R d , �⊂D . The weak form of the eigenvalue problem of linear 

elastic structure vibration is written as 

a ( u, υ) = λb ( u, υ) , ∀ υ ∈ U (1) 

where λ is the eigenvalue; u is the eigenvector; 

U = { υ ∈ H 

1 (�) d | υ = 0on �D } is the space of kinematically ad- 

missible displacement fields; a ( u, υ) and b( u, υ) are defined as 

a ( u, υ) = 

∫ 
�

Ae (u ) · e (υ) d� (2) 

b(u, υ) = 

∫ 
�

ρuυ d� (3) 

where A is the stiffness tensor; e ( u ) is the strain tensor; ρ
is the material density. Generally, the eigenvectors are mass- 

orthonormalized by imposing the condition 

b 
(
u i , u j 

)
= δi j (4) 

where δij is the Kronecker Delta. 

The optimization problem of present work is to maximize the 

first eigenfrequency λ1 subject to a constraint of volume, i.e., 

max λ1 

s . t . a ( u, υ) = λ1 b ( u, υ) , ∀ υ ∈ U 

V − V̄ ≤ 0 (5) 

where V = 

∫ 
� d� is the volume of structure, and V̄ is the upper 

bound of volume. 

For the completeness of the present paper, the sensitivity anal- 

ysis for the optimization problem [31] is briefly revisited in the 

remaining part of this section. The Lagrangian of the optimization 

problem is defined as 

L = λ1 + a ( u, w ) − λ1 b ( u, w ) + 	 
(
V̄ − V 

)
(6) 

where w ∈ U is a Lagrange multiplier for the equation of eigen- 

value problem Eq. (1) ; 	 is the Lagrange multiplier for the volume 

constraint, and it is updated during optimization according to the 

Augmented Lagrange multiplier method [36] as 

	 k +1 = max 

{ 

0 , 	 k + 

1 

μ

(∫ 
�

dx − V 

)} 

(7) 

where μ is a penalization factor close to zero and set by designer. 

The material derivative of the Lagrangian is given by 

L ′ = λ1 
′ + a ′ ( u, w ) − λ1 

′ 
b ( u, w ) − λ1 b 

′ ( u, w ) − 	V 

′ (8) 

where a ’( u, w ), b ’( u, w ) and V ’ are given as 

a ′ ( u, w ) = a 
(
u 

′ , w 

)
+ a 

(
u, w 

′ ) + 

∫ 
∂�

Ae (u ) · e (w ) V n d� (9) 

b ′ ( u, w ) = b 
(
u 

′ , w 

)
+ b 

(
u, w 

′ ) + 

∫ 
∂�

ρuw V n d� (10) 

V 

′ = 

∫ 
∂�

V n d� (11) 
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