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a b s t r a c t 

This paper demonstrates a novel approach to solving inverse radiant enclosure problems based on dis- 

tributed construction. Specifically, the problem of determining the temperature distribution needed on 

the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed con- 

struction problem in which a shared resource, temperature, is distributed by computational agents mov- 

ing blocks. The sharing of blocks between agents enables them to achieve their desired local state, which 

in turn achieves the desired global state. Each agent uses the current state of their local environment and 

a simple set of rules to determine when to exchange blocks, each block representing a discrete unit of 

temperature change. This algorithm is demonstrated using the established two-dimensional inverse radi- 

ation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired 

temperature profile on the design surfaces. The resource sharing algorithm was able to determine the 

needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design 

surfaces in the nine cases examined. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Radiant enclosure problems are encountered in many design 

problems, for example, in annealing, industrial process ovens, and 

combustion chambers [11,22] . These are problems where radiant 

heat transfer from several heater surfaces is used to establish and 

maintain a specified temperature distribution over several design 

surfaces . A design surface could be any material in a manufactur- 

ing process that requires precise or uniform temperature control 

such as glass or metal. These types of problems are concerned with 

the geometric design of the enclosure or the correct heater surface 

inputs to produce a desired temperature profile along the design 

surface or both [27] . Radiant enclosure design problems require de- 

veloping a detailed analysis model, which can then be used in the 

design process. In the case considered here, the design process in- 

volves selecting the needed inputs to the heater surfaces to achieve 

the desired temperature profile along the design surfaces. 

Frequently in engineering design, the analysis problem to be 

solved is an inverse problem, in which the desired outcome is 

specified and the goal is to specify the inputs required to ob- 

tain the desired outcome, i.e. the design variables. For example, 

in many radiant enclosure design problems the temperatures of 
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the design surfaces are specified and the temperatures of the 

heater surfaces need to be determined. Direct solutions to these 

inverse problems, (e.g., using the known design surface tempera- 

tures to determine the needed heater surface temperature) is not a 

tractable solution method because there may be multiple solutions 

that yield the desired design outcome, many or all of which may 

be physically infeasible, or there may be no solutions. These types 

of inverse problems are mathematically ill-posed [28] . A problem 

is considered well posed when the problem is unique, a solution 

exists, and the solution depends on the data [23,38] . The ill-posed 

nature of these problems makes them sensitive to errors, and small 

changes in the input may significantly change the output [33] . 

To overcome this, three approaches are generally taken: trial 

and error, optimization, and regularization. In trial and error the 

design engineer uses information from the system, known or de- 

sired constraints, and experience to make an educated guess about 

what inputs are needed to achieve the desired design. That edu- 

cated guess can be then iteratively refined to achieve the desired 

design. However, in many cases trial and error is too time consum- 

ing and optimization or regularization are used to find the needed 

design inputs [25] . Optimization is an iterative process that solves 

the problem repeatedly whereas regularization adds additional in- 

formation to the problem to find a less accurate but stable solu- 

tion. 

In optimization an objective function f(x), is used to minimize 

the difference between the actual solution and the desired design 
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[10] . The objective function incorporates all the design variables 

and is frequently subject to design constraints, which can either be 

equality constraints g(x) or inequality constraints h(x) . The search 

space is the domain of the objective function f(x), and computing 

the value of the objective function at each iteration, given that it 

satisfies the constraints, is called a feasible solution [44] . Depend- 

ing on the nature of the desired solution either the design vari- 

ables or the constraints can be varied until the objective function 

is sufficiently minimized to find an acceptable solution. This can 

be expressed as 

min f (x ) (1) 

is subject to 

g(x ) = c (2) 

and 

h (x ) ≤ d (3) 

When optimization is used to solve radiant enclosure problems, 

the objective function takes the form of the equation below. The 

value of the objective function is found by computing the variance 

for desired temperature or heat flux profiles on the design surfaces. 

f = 

1 

N 

N ∑ 

i =1 

[
T i − T ∗i 

]2 
(4) 

Where N is the number if surfaces, T is the current temperature of 

each design surface and T ∗ is the desired temperature and f is the 

value of the objective function. 

Derivative-based optimization methods move iteratively 

through the search space, using derivative information to guide 

the search [14,20] . This procedure is repeated until the stopping 

criteria have been reached, e.g., a specified number of time steps 

or the objective function has been minimized below a certain 

value [32] . These methods include conjugate gradient, Newton- 

Raphson, golden section, and steepest descent, which have all been 

used to solve radiant enclosure problems [11,12,19,34] . Heuristic 

optimization methods have also been used in radiant enclosure 

problems and include: genetic algorithms, tabu search, simulated 

annealing and particle swarm optimization [1,36,37] . Heuristic 

optimization often requires a large amount of sampling of the 

search space, which means the search may take longer. 

Regularization attempts to make the ill-posed portion of the 

problem tractable at the expense of accuracy. Finding an accurate 

and stable solution means striking a balance by reducing the fluc- 

tuations associated with the ill-posed nature of the problem with- 

out producing an over smoothed solution [2,43] . Regularization 

techniques, such as truncated singular value decomposition, modi- 

fied truncated singular value decomposition, and Tikhonov regular- 

ization have been used to solve radiant enclosure problems [18,27] . 

Radiant enclosure problems have also been solved using different 

geometric configurations and initial conditions [13] . Singular value 

decomposition (SVD) is an algebraic manipulation wherein a ma- 

trix of known parameters (A) is broken into three linearly inde- 

pendent matrices, an orthonormal unitary matrix, an orthonormal 

conjugate transpose matrix, and a diagonal matrix of singular val- 

ues. The matrix of singular values is used to determine how in- 

vertible the matrix is and if the matrix is well posed or ill posed. 

Truncated singular value decomposition and modified truncated 

singular value decomposition are based off of singular value de- 

composition. By truncating some of these singular values, the ma- 

trix becomes well posed, and a realizable solution can be found. 

Modified truncated singular value decomposition adds a correcting 

term for the remaining singular values and corresponding singu- 

lar vectors [22] . Tikhonov’s regularization procedure attempts to 

reduce unstable effects by adding smoothing terms to the least 

squares equation [42] . These methods regularize the system by 

minimizing the residual and as such are resistant to errors in input 

data. 

In this paper we describe a novel approach to solving a ra- 

diant enclosure design problem by posing it as a resource shar- 

ing problem which can be solved using distributed construction. 

Specifically, the distribution and redistribution of a shared resource 

(temperature) by computational agents allows them to manipulate 

a shared environment. Unlike optimization, where all of the design 

variables are used in a single objective function, each agent acts in- 

dependently and observes a single design variable. Each agent will 

continue to take action until their local state is met, and when all 

of the agents meet their local state, the desired global state is met 

as well. 

2. Background 

Biological systems have been used as the source of inspiration 

for many optimization algorithms, e.g., particle swarm optimiza- 

tion, genetic algorithms, and ant colony optimization [45] . Self- 

organization is an area of study, that draws its origins in biological 

systems and seeks to establish how organisms can react, adapt, and 

interact with their environment and each other to create macro- 

scopic level behaviors from microscopic interactions [24] . Flocking 

behavior of birds and schooling behavior of fish are both examples 

of how order can spontaneously be created from disorder and how 

global behaviors are created from local interactions [9] . 

Stigmergy, like self-organization, uses local information and 

simple instruction sets to make decisions without global guid- 

ance. Stigmergy is how social insects (e.g., bees, ants, termites and 

wasps) coordinate their behaviors based on indirect communica- 

tion methods. Coordination is established by making small changes 

to the insects’ environment, which other insects can interpret, and 

triggering actions or responses, which further alter their environ- 

ment [6] . Actions reinforce each other and can lead to the con- 

struction of complex structures without the need for direct com- 

munication between the individuals or a centralized coordinator. 

Insects use only local information and simple instruction sets to 

solve complex problems based on emergent behavior where order 

is created spontaneously and without planning, using insects inter- 

actions with their environment. Dorigo’s work using pheromones 

for routing path optimization is one of the seminal works that 

combines self-organization, insect behavior, and a practical imple- 

mentation of stigmergy [16] . This current work differs in that it 

focuses on the stigmergic construction process. For example, pa- 

pers wasps and African termites and their construction methods 

have been modeled [5,17,30,40] . This construction process has in- 

spired the development of a number of computational techniques 

[8,21,35] . Construction of paper wasp nests involves wasps grad- 

ually depositing their own building material based only on the 

current state of the nest [29] . Each wasp evaluates the current 

state of construction and based on a simple set of rules deter- 

mines where to build. In the same way African termites build com- 

plicated colonies with complex systems for heating, ventilation, 

cooling, and separate chambers for nurseries and farming [39] . 

Each termite will perform a task based on their preference, ex- 

perience, and abilities [7] . Termites operate continuously and effi- 

ciently without a centralized coordinator or a task list. Each worker 

is allowed to contribute and although they use roughly the same 

rules, slight differences in preferences and abilities leads to emer- 

gent behavior. 

The computational application of stigmergic construction is dis- 

tributed construction . In distributed construction Agents are inde- 

pendent actors, i.e., computational insects. These agents can sense 

changes to their environment and based on simple rule sets, 

manipulate uniform construction materials or blocks to change 
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