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Highlights

• Enriched Isogeometric analysis for the Stefan problem.
• Sharp interface solution to both classical and dendritic Stefan problems.
• Algebraic distance estimations and point projection algorithms developed for efficient analysis.
• Direct imposition of Stefan and Gibbs–Thomson conditions.
• Demonstrated with several numerical examples of classical and dendritic Stefan problems.

Abstract

In the present paper, the Stefan problem is solved by enriching an underlying NURBS-based isogeometric approximation with
an explicitly defined (sharp) interface on which a hybrid function/derivative condition is isoparametrically described. Since the
geometry of the enrichment is explicitly defined, normals and curvatures are explicitly computed at any point on the interface.
Thus, the enriched approximation naturally captures the interfacial discontinuity in temperature gradient and naturally enables the
imposition of Gibbs–Thomson condition. The blending of the enrichment with the underlying approximation requires an estimate
of distance to the enriching geometry from a quadrature point and the parametric value of the footpoint on the enriching geometry.
These quantities are computed efficiently in the present paper using an algebraic estimate of distance coupled with an algebraic
point projection method. These algebraic schemes rely on implicitization of the parametric curve, and are shown to be more efficient
and robust than Newton–Raphson iterations. Procedures for adaptive time stepping, refinement and coarsening of geometry are
developed to increase the stability and efficiency of the developed methodology. Several numerical examples of classical and
dendritic Stefan problem are presented to demonstrate the methodology.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The Stefan problem, mathematically describing solidification or melting [1], is a moving boundary problem of
importance in many engineering applications. A significant difficulty in solving the Stefan problem, in addition to
computationally modeling the moving interface, is in applying the two interface conditions: the Stefan condition and
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Nomenclature

Ω Problem domain
Ωl ,Ωs Liquid and solid sub-domains
Γint Interface between Ωl and Ωs
ΓT ,Γq Dirichlet and Neumann boundary
T̄ Known temperature on Dirichlet boundary
q̄ Known normal heat flux on Neumann boundary
n Normal to the interface
nl , ns Outward normal to Ωl and Ωs
t Time
T Temperature field
Tl , Ts Temperature field in Ωl and Ωs
ρ Material density
c Specific heat
cl , cs Specific heat for Ωl and Ωs
k Thermal conductivity
ks, kl Thermal conductivity in Ωl and Ωs
s Heat source
x Point in the physical space
L Latent heat (per unit mass)
qn Normal heat flux
qnl , qns Normal heat flux into Ωl and Ωs
vn Normal interfacial velocity
Tm Melting temperature
κ Mean surface curvature
γ Capillary length
ϵc Surface tension coefficient
ϵv Kinetic mobility coefficient
u Parameter of geometric entity
u f Parameter value of footpoint
C(u) Parametric curve or surface entity (u is a vector for a surface)
P(x) Function projecting x onto lower dimensional parametric entity C(u)

d(x) Distance between x and lower dimensional parametric entity C(u)

w Weight function
ds Scaling factor for weight function
f (x) Behavioral field
fΩ (x) Approximation to behavior over domain
fΓ (u) Approximation to behavior on enrichment
T c Approximation to temperature field on underlying domain
T e Enriching temperature field defined isogeometrically on interface
Ge

i Enriching temperature gradient defined isogeometrically on interface
Ge

l , Ge
s Enriching temperature gradient corresponding to liquid or solid subdomains

PI (x I , yI , z I ) I th Control point coordinates
n, ne Number of degrees of freedom for domain approximation and enrichment
N c

I , N e
I NURBS basis function for domain approximation and enrichment corresponding to control

point PI
v̄I Speed value associated with control point PI
vI (v

x
I , v

y
I , v

z
I ) Velocity of control point PI

Ti Initial temperature
Tw Wall temperature
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