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The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volu-
metric data. The advantage of DC is that it can reproduce sharp features by inserting vertices anywhere
inside the grid cube, as opposed to the Marching Cubes (MC) algorithm that can insert vertices only on
the grid edges. However, DC is unable to guarantee 2-manifold and watertight meshes due to the fact that
it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that is
capable of overcoming this limitation. Our method decomposes an ambiguous grid cube into a maximum
of twelve tetrahedral cells; we introduce novel polygon generation rules that produce 2-manifold and
watertight surface meshes. We have applied our proposed method on realistic data, and a comparison
of the results of our proposed method with results from traditional DC shows the effectiveness of our

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Surface meshing is an invaluable tool and one of the most com-
monly used methods in scientific research for visualizing volumet-
ric data. A surface mesh of a real-world object can be generated
in one of two ways: (1) by using a scanning device such as the
NextEngine 3D Laser Scanner or Microsoft’s Kinect, or (2) by iso-
surface extraction from volumetric data such as MRI or CT using
contouring algorithms such as Marching Cubes (MC) [1], Dual Con-
touring (DC) [2] or Dynamic Particle Systems [3]. In both cases,
the resulting polyhedral mesh may contain geometric errors such
as non-manifold edges and/or vertices, holes and intersecting poly-
gons, especially if the surface being meshed is complex. The survey
of Ju in [4] discusses the wide range of techniques that has been
developed for repairing polygonal models.

Non-manifold geometry is problematic for a variety of situa-
tions, such as rendering of refractive surfaces, computation of sur-
face normals and curvatures, bounding tetrahedral meshes suitable
for finite element analysis and fluid simulations, as well as CAD-
based manufacturing and 3D printing. The repairing of geometric
errors in meshes is an active research area and there is no one-
fits-all algorithm that can fix all the different types of geometric
errors. Of course, this is not to say that topologically and geo-
metrically correct surface mesh generation is a poorly researched
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field. [5] presents an extensive review of the many variants of the
MC algorithm that have been developed over the years. Tight co-
cone [6] is another meshing algorithm that guarantees watertight
meshes. Marching Tetrahedra 7] is another method similar to MC
that can produce topologically correct meshes.

This work focuses primarily on Dual Contouring. DC offers
the advantage of producing meshes with sharp features [2]. In
MC, the newly created vertices are constrained to the edges of
the grid while in DC, the vertices can be anywhere inside the
grid cube. However, the traditional DC algorithm produces non-
manifold edges and vertices in certain situations. In this work, we
present a modified Dual Contouring algorithm that is capable of
generating 2-manifold meshes and thereby avoid non-manifold ge-
ometric errors in the first place.

The remainder of this paper is divided into the following sec-
tions: Section 2 discusses in general how the traditional DC algo-
rithm works and what the current state of the art is. Section 3 de-
scribes our proposed solution in detail. Section 4 shows some of
the results of the proposed method and Section 5 concludes with
a discussion of some of the limitations of the proposed method.

2. Dual contouring
2.1. An overview of dual contouring
Dual Contouring (DC) is a method used for extracting the sur-

face boundary of an implicit volume. The method is dual in the
sense that vertices generated by DC are topologically dual to faces
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Fig. 1. (Left) Formulation of quadratic error functions. The blue region represents the surface/volume. (Middle) Edges as well as a sharp feature generated with DC, (Right)
Edges generated with MC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in the Marching Cubes (MC) algorithm. In DC, a uniform grid is
superimposed on the implicit volume. The grid cubes are repre-
sented as nodes in an octree data structure. For each grid cube
intersecting the volume, the eight corners of the cube are assigned
inside/outside labels, and a quadratic error function (QEF) is de-
fined as E[x]=X(N; « (x—p;))? where x is the computed dual ver-
tex or minimizer, and p; and N; represent the intersections and unit
normal, respectively, of the volume boundary with the edges of the
cube.

Fig. 1 (left) illustrates the basic concept of QEFs in 2D. The
bounding surface of the volume shown in light blue color inter-
sects the lower left corner of a cube. The lower left corner of
the cube is marked with a “+” sign indicating that it lies inside
the volume while the remaining corners of the cube are marked
with a “~” sign indicating that they lie outside the volume. Fur-
thermore, the surface intersects the left and bottom edges of the
cube at points pg and p; (green points), respectively. If a tangent
were drawn from points pg and p; and extended inside the cube,
they would intersect each other somewhere inside the cube at x
(red point). This point would be a vertex of the isosurface. Typi-
cally, one minimizer is computed for each grid cube containing a
sign change. The minimizer can be anywhere inside the grid cube,
rather than being restricted to the edges of the cube as in MC.
This feature allows DC to produce meshes with sharp features, as
shown in Fig. 1 (middle), whereas MC cannot, as shown in Fig.
1 (right).

The objective function E[x] can be expressed as the inner prod-
uct (Ax—b)T(Ax—b) where A is a matrix whose rows are the nor-
mals N; and b is a vector whose entries are (N; < p). The function
E[x] can then be expanded as

E[x] = x"ATAx — 2x"ATb + b'b (1)

where ATA is a symmetric 3 x 3 matrix, ATb is a column vector of
length three and b7b is a scalar. This representation of a QEF can be
solved using the QR decomposition [8], and it should be noted that
Singular Value Decomposition (SVD) [9,10] can also be employed
for solving this system.

In traditional DC, a recursive method using the three recursive
functions cellProc(), faceProc() and edgeProc() is used to traverse
through the octree during the polygon generation phase. For each
minimal edge exhibiting a sign change, a quadrangle or two tri-
angles are generated by connecting the minimizers of the cubes
containing the minimal edge.

2.2. Background and literature review

One of the main disadvantages of DC is that it does not guaran-
tee 2-manifold and intersection-free surfaces. A polygonal mesh is
considered as being 2-manifold if each edge of the mesh is shared
by only two faces, and if the neighborhood of each vertex of the
mesh is the topological equivalent of a disk. Ju and Udeshi ad-

dress the issue of intersecting triangles in [11] by proposing a hy-
brid method where dual vertices (inside grid cubes) as well as face
vertices and edge vertices (inserted on the cube’s face and edges,
respectively) are used to create polygons according to new polygon
generation rules. Zhang et al. in [12] present a topology-preserving
algorithm for surface simplification using vertex clustering and an
enhanced cell representation, but this method is unable to avoid
non-manifold edges and vertices. Varadhan et al. [13] suggest an
approach that combines edge intersection testing, adaptive subdi-
vision, and dual contouring to reconstruct thin features. Schaefer
et al. use a vertex clustering method in [14], where they present
an additional topology criterion that must be satisfied to ensure
manifoldness.

Zhang and Qian in [15] take a different approach by first gen-
erating a base mesh using standard DC, and then analyzing and
categorizing the octree leaf cells into 31 topology groups. For am-
biguous cubes, multiple minimizers, as many as three in some in-
stances, are inserted whereby a new topologically correct mesh is
created by reconnecting the vertices of the mesh with the newly
inserted minimizers. In [16], Zhang and Qian decompose ambigu-
ous cubes into twelve tetrahedral cells, each having one minimizer,
and construct a series of polygons and polyhedrons to create tetra-
hedral meshes. This method can avoid topological ambiguities in
tetrahedral meshes but does not produce surface meshes.

Our proposed method uses an approach similar to that in
[16] by decomposing an ambiguous cube into several tetrahedral
cells. In this work, we introduce novel polygon generation rules
that result in 2-manifold and watertight triangular surface meshes.

3. 2-Manifold dual contouring

Our proposed method begins the same way as in classical Dual
Contouring (DC) by superimposing a uniform virtual grid onto the
implicit volume. Depending on the isovalue chosen, the corners
of each cube of the grid can have 23 or 256 possible configura-
tions. By taking rotation and symmetry into account, these con-
figurations can be reduced into 14 fundamental cases, as shown
in Fig. 2. Cases 0, 1, 2, 5, 8, 9 and 11 are simple unambiguous
cases, meaning there is only one possible surface intersecting the
grid cube (no surface for Case 0). Cases 3, 4, 6, 7, 10, 12 and 13
are ambiguous, meaning that there is more than one possible sur-
face that intersects the cube. It is the presence of these ambiguous
cubes, as well as the fact that standard dual contouring produces
only one minimizer for each cube, that causes non-manifold sur-
faces to arise. Additionally, in our experiments we have observed
that the complement of Case 4 (that is, a situation where the two
diagonally opposite corners of the cube are in background and
the rest are in the foreground) is also responsible for the gener-
ation of non-manifold vertices, as shown in Fig. 3. These particu-
lar non-manifold vertices occur inside the surface mesh. In [17],
Sohn shows that a cubic cell can be decomposed into a set of
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