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We consider the problem of solving large sparse linear systems where the coefficient matrix is possibly sin-

gular but the equations are consistent. Block two-stage methods in which the inner iterations are performed

using alternating methods are studied. These methods are ideal for parallel processing and provide a very

general setting to study parallel block methods including overlapping. Convergence properties of these meth-

ods are established when the matrix in question is either M-matrix or symmetric matrix. Different parallel

versions of these methods and implementation strategies, with and without overlapping blocks, are explored.

The reported experiments show the behavior and effectiveness of the designed parallel algorithms by exploit-

ing the benefits of shared memory inside the nodes of current SMP supercomputers.

© 2015 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

Consider the problem of solving a linear system

Ax = b, (1)

where A is an n × n matrix such that b is in R(A), the range of A.

Given a splitting A = M − N (M nonsingular), a classical iterative

method produces the following iteration scheme

Mx(l+1) = Nx(l) + b, l = 0, 1, . . . . (2)

On the other hand, when the linear systems (2) are not solved ex-

actly, but rather their solutions approximated by iterative methods,

we are in the presence of a two-stage method (see e.g. [1,2]). That is,

consider the splitting M = F − G and perform, at each outer step l, q(l)

inner iterations of the iterative procedure induced by this splitting.

Thus, the two-stage method can be written as follows

x(l+1) = (F−1G)q(l)x(l) +
q(l)−1∑

j=0

(F−1G) jF−1(Nx(l) + b), l = 0, 1, . . . .

(3)
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Without loss of generality, let us assume that the matrix A has the

form

A =

⎡
⎢⎢⎢⎢⎣

A11 A12 · · · A1r

A21 A22 · · · A2r

...
...

...

Ar1 Ar2 · · · Arr

⎤
⎥⎥⎥⎥⎦, (4)

with the diagonal blocks Aii being square of order ni, 1 ≤ i ≤
r,

∑r
i=1 ni = n. Let A = M − N be a splitting of A such that M is a block

diagonal matrix M = Diag{M1, . . . , Mi, . . . , Mr}, and let us consider

the splittings Mi = Bi − Ci, Mi = Fi − Gi, 1 ≤ i ≤ r. Let M = Pi − Qi =
Ri − Si be splittings of the matrix M such that

Pi = Diag{I, . . . , Bi, . . . , I}, Ri = Diag{I, . . . , Fi, . . . , I}. (5)

Moreover, let the n × n diagonal matrices Ei have ones in the entries

corresponding to the diagonal block Mi and zero otherwise. In order

to approximate the linear systems (2) we perform, at each outer it-

eration l, q(i, l) inner iterations of the following alternating iterative

scheme:

z
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2 )
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i
Qiz
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+ P−1
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(Nx(l) + b),
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i
+ R−1

i
(Nx(l) + b), k = 0, 1, . . . , q(i, l) − 1,

with z(0) = x(l), or equivalently

z(k+1)
i

= R−1
i

SiP
−1
i

Qiz
(k) + R−1

i
(SiP

−1
i

+ I)(Nx(l) + b),

k = 0, 1, . . . , q(i, l) − 1.
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Thus, for l = 0, 1, . . . , the alternating two-stage method can be writ-

ten as follows,

x(l+1) =
r∑

i=1

Eiz
q(i,l)
i

=
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i,l)x(l)

+
q(i,l)−1∑

j=0

(R−1
i

SiP
−1
i

Qi)
jR−1

i
(SiP

−1
i

+ I)(Nx(l) + b)]. (6)

Note that the global iteration matrix of the alternating two-stage it-

erative method (6) can be written as T (l) = ∑r
i=1 EiT

(l)
i

, with

T (l)
i

= (R−1
i

SiP
−1
i

Qi)
q(i,l) +

q(i,l)−1∑
j=0

(R−1
i

SiP
−1
i

Qi)
jR−1

i
(SiP

−1
i

+ I)N, (7)

or equivalently as

T (l) =
r∑

i=1

Ei[(R−1
i

SiP
−1
i

Qi)
q(i,l) + (I − (R−1

i
SiP

−1
i

Qi)
q(i,l))M−1N]. (8)

With the above notation, the iterative scheme (6) describes an

alternating two-stage Block-Jacobi type method but note that this

method is much more general if, for example other matrices M, Pi,

Ri and/or Ei are chosen. Particularly if Pi = P, Ri = R for all i = 1, . . . , r,

this iteration scheme includes the alternating method described in

[3] but this general formulation allows us to include overlapping set-

ting the weighting diagonal nonnegative matrices Ei such that they

add up to the identity. From a theoretical point of view, under cer-

tain hypotheses, the presence of overlap can reduce the convergence

rate of the iterative solvers in the nonsingular case. Therefore, if the

extra work required by the use of overlap is offset by a reduction in

the number of iterations, probably the computation time will be re-

duced; see [4] and [5]. The experiments performed in [4] have been

executed in only one processor using Matlab for the code imple-

mentation. However, to run the experiments of [5], a parallel block

iterative code was implemented with the Block Jacobi method as

the outer iteration and the point Gauss-Seidel method as the in-

ner iteration. The test matrix was generated from the discretization

of the Laplace’s equation using the standard five-point stencil and

the experiments were performed on a parallel computer using 16

processors. As compared to the non-overlapping implementation, the

parallel implementation with overlapping blocks achieved a time re-

duction about 5%, when the involved parameters in both algorithms

were chosen near to the optimal values.

Despite the fact that the behavior of the convergence rate of the

block-based iterative solvers with overlap is an open question, spe-

cially in the singular case, some numerical results given in [6] show

that overlap can also improve the asymptotic convergence factor and

the sequential execution time of iterative methods for singular sys-

tems, and specifically for ergodic Markov chains.

The use of quite general weighting matrices in (6) allows us the

study of truly parallel methods (with or without overlap), i.e., meth-

ods in which each processor computes an approximation to the solu-

tion of a problem which is much smaller than the original problem.

Recently convergence of (6) has been analyzed in the context of solv-

ing nonsingular linear systems obtaining similar convergence results

to those obtained in [3]; see [7] and [8]. In this paper we give con-

vergence results of these methods considering the general formula-

tion for consistent linear systems. Concretely, in Section 3, we give

convergence results of these methods when M-matrices or symmet-

ric matrices are considered. The numerical experiments performed

in Section 4 explore the behavior of these parallel algorithms for the

solution of singular and nonsingular systems. Previously, in Section 2,

we present some definitions and preliminaries that are used later in

the paper. The conclusions are given in Section 5. This paper is based

upon Migallón et al. [9], but the current paper includes the following

additional research: new convergence results for symmetric positive

semidefinite matrices are given and new parallel versions of these

methods and implementation strategies, with and without overlap-

ping blocks, are explored.

2. Notation and preliminaries

In this section we summarize some definitions and theoretical re-

sults used later in the paper. Concretely, main results about the ex-

istence and uniqueness of splittings for stationary iterative methods

are presented, the theoretical concepts of convergent and semicon-

vergent matrix are introduced along with the most important results

that will be used in Section 3 to study the convergence of the alternat-

ing two-stage method when the coefficient matrix is both a singular

M-matrix or a symmetric positive semidefinite matrix.

A general matrix A is called an M-matrix if A can be expressed as

A = sI − B, with B ≥ O, s > 0, and ρ(B) ≤ s. The M-matrix A is singular

when s = ρ(B) and nonsingular when s > ρ(B). Let Zn × n denote the

set of all real n × n matrices which have all non-positive off-diagonal

entries. A splitting A = M − N is called regular if M−1 ≥ O and N ≥ O,

and weak regular if M−1 ≥ O and M−1N ≥ O.

Lemma 1 ([2]). Given a nonsingular matrix A and a matrix T such that

(I − T)−1 exists, there is a unique pair of matrices P, Q such that P is

nonsingular, T = P−1Q and A = P − Q. The matrices are P = A(I − T)−1

and Q = P − A.

In the context of Lemma 1, it is said that the unique splitting A =
P − Q is induced by the iteration matrix T. We point out that when

the matrix A is singular, the induced splitting is not unique; see e.g.,

[10].

Theorem 1 ([10]). Let A be a nonsingular matrix such that A−1 ≥ O.

Let A = M − N = P − Q be weak regular splittings. Consider the matrix

T = P−1QM−1N, then ρ(T) < 1. Furthermore there is a unique pair of

matrices B, C, such that A = B − C is a weak regular splitting and T =
B−1C.

Let T ∈ �n × n, by σ (T) we denote the spectrum of the matrix T.

We define γ (T) = max{|λ| : λ ∈ σ(T), λ �= 1}. We say that two

subspaces S1 and S2 on �n are complementary if S1 ⊕ S2 = �n, i.e.,

if S1 ∩ S2 = {0} and S1 + S2 = �n. The index of a square matrix T,

denoted by ind˜T, is the smallest nonnegative integer k such that

R(T k+1) = R(T k). By ind1T we denote the index associated with the

value one, i.e., ind1T = ind(I − T). Note that when ρ(T) = 1, ind1T ≤ 1

if and only if ind1T = 1. We say that a matrix T ∈ �n × n, is convergent

if limk→∞ T k = O. It is well known that a matrix T is convergent if and

only if ρ(T) < 1. By N (T) we denote the null space of T. We say that

T is semiconvergent if limk → ∞Tk exists, although it need not be the

zero matrix. If, on the other hand, ρ(T) = 1, two different conditions

need to be satisfied to guarantee semiconvergence, as the following

result shows.

Theorem 2 ([11]). Let T ∈ �n × n, with ρ(T) = 1. The matrix T is semi-

convergent if and only if the following two statements hold.

(a) 1 ∈ σ (T) and γ (T) < 1,

(b) N (I − T) ⊕ R(I − T) = �n.

Condition (b) is equivalent to the existence of the group inverse

(I − T)#, and it is also equivalent to having ind1T = 1; see, e.g., [12].

Definition 1 ([12]). Let A ∈ �n × n, and consider the following matrix

equations.

(1) AXA = A,

(2) XAX = X, and

(3) AX = XA.

A {1, 2}-inverse of A is a matrix X which satisfies conditions (1)

and (2). If, in addition, X satisfies condition (3), X is said to be a group

inverse of A.
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