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a b s t r a c t 

Different parallel agglomeration multigrid schemes have been developed aiming to improve the compu- 

tational performance of a compressible and an incompressible academic Computational Fluid Dynamics 

(CFD) codes, named Galatea and Galatea-I , respectively. Flow prediction is succeeded via the implementa- 

tion of Reynolds-Averaged Navier–Stokes (RANS) equations combined with appropriate turbulence models 

on three-dimensional unstructured tetrahedral or hybrid meshes. The sequence of required coarser grids, 

composed of irregular polyhedral elements, is generated either with the isotropic or directional (full- or 

semi-coarsening) fusion of neighbouring control volumes on a topology-preserving framework; it resem- 

bles the advancing-front technique as it begins from solid wall surfaces and extends successively to the 

interior domain. The multigrid accelerated approximation of flow and turbulence equations is achieved 

via the V-cycle implementation of either the Full Approximation Scheme (FAS) or its coupled version with 

Full Multigrid (FMG) method. Multigrid approaches with different agglomeration and solution strategies 

have been extensively tested against three- and quasi-three-dimensional test cases, all of them demon- 

strating their potential for considerably improved efficiency. Their contributions to the reduction of sim- 

ulations’ computation time are analysed, while additionally the differences due to the type of the flow 

(compressible or incompressible) are thoroughly discussed. 

© 2015 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved. 

1. Introduction 

During the last decades three-dimensional unstructured grids 

have become an essential tool for Computational Fluid Dynamics 

(CFD), extending its applications to complex geometries. However, 

despite the corresponding solvers are enhanced with the largest 

possible flexibility in the treatment of such complicated geome- 

tries, along with the minimum user interaction for their genera- 

tion/adaptation, they appear to be relatively inferior in terms of 

efficiency compared to the structured ones [1–6] . A remedy to this 

considerable deficiency is revealed to be the multigrid method- 

ology, a scheme originally proposed to increase the convergence 

rate of the numerical solution of elliptic problems [7,8] , but since 

then it has made its way to various types of numerical simulations 

[4,5,9–15] . Its main idea derives from the observation that most 

of the well-established iterative methods converge more slowly on 

finer grids [8] , as they succeed in time-effective relaxation of high 

frequency errors but they seem to be relatively inefficient against 

the low frequency ones [4,6] ; the more denser resolution is used 

the more slower damping of low frequency errors is achieved. The 
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multigrid technique, which is based on the solution of the gov- 

erning Partial Differential Equations (PDE’s) on successively coarser 

grids, actually transforms these low frequency errors in high fre- 

quency ones on the coarser resolutions, allowing for their efficient 

damping [4] . The solution produced at each coarser mesh is com- 

bined with this of its finer one for accuracy reasons; therefore, ap- 

propriate associating relations, namely restriction and prolongation 

operators, are required to be defined between each two successive 

grids [6] . Based on the aforementioned main concept of multigrid 

methodology, various versions of it have been developed during 

the past years; their differences are mainly focussed on the way 

the sequence of spatial resolutions is generated as well as on the 

associating relations used between each two successive grids [1–

4,8,16–23] . 

Regarding the generation of coarser grids, the multigrid method 

can be divided in two main types, namely the geometrical and 

the agglomeration one [1,4,6] . According to the geometrical-type 

schemes, the sequence of the coarser resolutions can be derived 

either by the generation of completely independent grids from the 

very beginning (non-nested approach) or by the construction of as- 

sociated (nested) grids; the latter is performed by beginning either 

from the coarsest one and enriching it with a refinement method 

[24,25] or from the densest one by removing Degrees of Freedom 

(DoF’s) and implementing re-triangulation [1,4] . Similarly to the 
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last technique, the agglomeration multigrid approach, introduced 

by Lallemand [26] , considers the construction of coarser grids from 

the initial finest one via the isotropic fusion of neighbouring con- 

trol volumes; as a result, coarser meshes with irregular polyhe- 

dral elements are produced [1,4,6] . Despite the satisfactory accel- 

eration entailed by this scheme for inviscid flow problems along 

with tetrahedral grids, its reduced performance is observed for 

viscous flow simulations performed on hybrid grids [16,20,27] . A 

semi-coarsening or directional agglomeration technique was pro- 

posed by Mavriplis [16] to alleviate the effects of this deficiency. 

According to this approach the control volumes of nodes belong- 

ing to stretched elements are merged only if they are aligned with 

the normal to the boundary surface direction; for the rest ones 

the standard isotropic procedure is followed. In that way the mesh 

anisotropy is moderated as the generated coarser grids appear to 

be less stretched than the initial finest one [27] . Alternatively, full- 

coarsening directional agglomeration [19-21,28] can be employed 

in such regions, according to which the procedure begins by merg- 

ing the boundary control cells, while at next a line-agglomeration 

step is performed, by fusing control volumes along implicit lines 

starting directly above the boundary volumes [20] ; a deeper ag- 

glomeration compared to semi-coarsening is achieved, preserving 

though the topology of the initial grid. Besides the aforementioned 

topological multigrid types, another popular type is the Algebraic 

Multigrid (AMG), which considers the construction of a coarsening 

matrix rather than the generation of any new grid [1,8] . 

The second characteristic distinguishing multigrid methods, 

concerns the way the data are exchanged between each two suc- 

cessive grids. The initially developed algorithms were employing 

the Full Multigrid scheme (FMG) [1,8] , according to which, since 

the fully or partially relaxed solution on the coarsest grid is ob- 

tained, it is interpolated (prolongated) to the finer one and used 

as an initial guess. The same procedure is repeated up to the finest 

resolution, succeeding in that way a cheaper initial condition than 

the usually utilized unphysical uniform one [8,29] . Alternatively, 

the Full Approximation Scheme (FAS) can be implemented; at each 

multigrid cycle it considers the solution of the governing PDE’s 

only for the finest resolution, while it employs approximate ver- 

sions of them for the coarser ones [6] . Since relaxation is com- 

pleted on the finest mesh, the values of variables and flux bal- 

ances are transferred (restricted) to the coarser one [4] . The afore- 

mentioned procedure is repeated up to the coarsest grid, while at 

next the computed variables’ corrections are interpolated (prolon- 

gated) successively back to the finest resolution, accomplishing in 

that way a V-cycle process [6] ; otherwise a W-cycle strategy can be 

followed [1] . A combined (nested) FMG–FAS approach was studied 

by Lambropoulos et al. [27] , according to which the FAS process 

is incorporated in the FMG one; the PDE’s are relaxed, beginning 

from the coarsest grid (preliminary stage) and, as the number of 

iterative cycles increases, the FAS extends successively to the finer 

meshes up to the finest one, at which point the main stage begins 

[6,27] . 

In this work the development of a parallel agglomeration multi- 

grid methodology to accelerate compressible and incompressible 

fluid flow simulations is initially reported. It is based upon a pre- 

vious study of the authors [6] , including though further advances 

of the incorporated multigrid scheme, besides a more detailed de- 

scription of it, e.g., extra and slightly different constraints for lim- 

iting the fusion of control cells at solid wall surfaces and lower 

prismatic layers are imposed, while a distance-based prolongation 

process is used in case of viscous flows. In general, agglomera- 

tion of adjacent control volumes is performed in a way analogous 

to the advancing front technique, as the whole procedure begins 

with the fusion of the viscous boundary nodes’ control cells at 

each sub-domain (in which the initial grid is divided for parallel 

processing) and then extends to the internal ones. However, the 

fusion can be performed in isotropic, semi- or full-coarsening di- 

rectional mode, depending on the flow type and consequently on 

the grid type [4,6,29] . Special care is required for the ghost nodes 

at the overlapping regions between adjacent sub-grids [4] , to be 

merged or remain singletons, according to the agglomeration of 

their corresponding core nodes at neighbouring partitions [6,29] . 

In order to achieve a multigrid accelerated iterative solution, ei- 

ther the FAS [6] or the combined FMG–FAS [27] procedure is fol- 

lowed, the latter dividing the whole procedure in a preliminary 

and a main stage [27] . For the evaluation of the proposed method- 

ology compressible code Galatea [29,30] and incompressible code 

Galatea-I [6] are used. These relatively recently developed, node- 

centred finite-volume solvers employ the appropriate Reynolds- 

Averaged Navier–Stokes (RANS) PDE’s [30-34] along with suitable 

two-equation turbulence models, namely k –ε [35,36] , k –ω [37] and 

SST (Shear Stress Transport) [38] (for Galatea-I only SST), on hybrid 

unstructured grids including tetrahedral, prismatic and pyramidi- 

cal elements. Artificial compressibility (or pseudo-compressibility) 

methodology is utilized in Galatea-I , which adds a temporal deriva- 

tive of pressure to the continuity equation allowing in that way in- 

compressible PDE’s to be solved within the framework of a time- 

marching compressible flow algorithm [1,8,39,40] . Both algorithms 

are further accelerated with parallel processing, based on domain 

decomposition approach and Message Passing Interface (MPI) li- 

brary functions [41-45] . The proposed multigrid methodology was 

validated against available in the literature compressible and in- 

compressible benchmark test cases; the obtained results demon- 

strate the improvement of codes’ computational performance with 

its implementation. Moreover, they reveal the differences among 

the applied multigrid alternatives as well as those due to the type 

of the flow (compressible or incompressible). 

2. Flow model 

2.1. Governing equations 

The compressible (Favre-averaged) or incompressible (Reynolds- 

averaged) Navier–Stokes equations (RANS) are described in three- 

dimensional differential formulation as [1] 
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where � S denotes the vector of the source term, equal to zero in 

this study. The flow variables’ vector �
 W is defined for compress- 

ible (five conservati ve variables) and incompressible (four primitive 

variables) flow as [6, 30] 

�
 W compressible = 

[
ρ ρu ρv ρw ρE 

]T 
(2) 

�
 W incompressible = 

[
p u v w 

]T 
(3) 

where ρ is the density, u , v , w the velocity components, p the pres- 

sure and ρE the specific total energy, all in dimensionless formula- 

tion; for incompressible flow the energy equation is not included. 

The vectors � F in v , � G 

in v , � J in v and 

�
 F v is , � G 

v is , � J v is are the inviscid and vis- 

cous flux terms respectively, described in case of compressible flow 

as [1, 30] ⎛ 
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