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a b s t r a c t 

A simple and accurate scheme for modeling microstructures is proposed with the help of element trim- 

ming combined with signed distance function based boundary smoothing. To accommodate randomly 

distributed fibers in unidirectional composites, digital image processing is used. The interfaces of multi- 

materials are identified by introducing a signed distance function, and then, square background elements 

crossing the interfaces are simply trimmed and divided to represent a single material behavior by a 

single element. After element trimming, the elements that are polygon-shaped in the two-dimensional 

domain are split into conventional three-node triangle elements (six-node prism elements in the three- 

dimensional domain) available in many commercial software packages. The present modeling scheme 

was verified through benchmark examples in terms of the accuracy and efficiency and then applied to 

the modeling of unidirectional composites based on real microscopic images to evaluate the equivalent 

elastic properties. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

A variety of composite materials (reinforced plastics, metal 

composites, ceramic composites and so forth) have been widely 

adopted in various applications in the automotive, offshore plant, 

construction, sporting, and aerospace industries due to their high 

stiffness and strength-to-weight ratio. Unidirectional (UD) fiber- 

reinforced polymer composites containing microstructures have 

been routinely modeled by two constituents (the fiber and matrix) 

or by more than two constituents (fiber, matrix, void and inter- 

phase/interface). The microstructure conditions at the small-scale 

level (constituent-level), such as dimensions, shapes, spatial dis- 

tributions, material properties of the constituents, strongly affect 

the interactions between the constituents and thus, have a critical 

role in the performance at the large-scale level (lamina-, laminate- 

, and structure-levels) [1,2] . Therefore, there have been numerous 
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effort s to underst and the link of the mechanical response between 

the small-scale and large-scale levels of UD composites. 

As part of such effort s, to reflect the microstructure effects, 

many researchers have developed finite element (FE) model gen- 

erators [3,4] to consider the statistical distribution of the equiv- 

alent elastic properties of the lamina and investigated the effect 

of artificially generated microstructures. They thus succeeded in 

a more accurate prediction higher than the FE solutions of sim- 

ple hexagonal, square fiber arrays or analytic solutions using the 

Mori-Tanaka method with the assumption of transverse isotropy 

[5] . However, in a practical sense, manufacturing composite ma- 

terials that have statistical fiber distributions is not a straightfor- 

ward process because the microstructure configurations and mate- 

rial properties of composites are quite affected by the manufactur- 

ing conditions such as the curing cycle, tool-part interaction during 

the curing process, level of applied vacuum pressure, temperature 

control and so forth [5] . Therefore, artificially generated fibers in 

numerical modeling are somewhat different from real fibers not to 

mention that their shapes are not purely circular and their diame- 

ters are not constant. To accurately investigate the mechanical be- 

havior of UD composites, more realistic FE models that reflect the 
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microscope images of SEM or TEM are required as presented by 

many researchers [6–13] . To accommodate a real microscope im- 

age directly as it is, voxel and voxel-like methods have been intro- 

duced [6] . Because these methods treat one pixel to be one square 

FE or four triangle FEs, a large number of nodes have to be used to 

obtain accurate results for complex objects. It is thus quite difficult 

to cover a large-size domain due to limited computer resources. 

In addition, generally, they generate jagged edges that can cause 

an undesirable stress concentration in contrast to smooth bound- 

aries in real materials. Furthermore, continuing efforts to generate 

FE meshes that accommodate microstructures through image pro- 

cessing have been reported [7–13] . On the other hand, as a con- 

ventional method, it is possible to create a FE model directly when 

the CAD file of the microstructure is already arranged. However, 

creating CAD files of complex objects could still be a cumbersome 

task even though there have been many dramatic enhancements in 

commercial CAD software, and a few successes in converting im- 

ages to CAD files have been reported [14–16] . 

From the viewpoint of computational mechanics, to consider 

the detailed configuration of microstructures efficiently, many 

multi-material modeling schemes have been proposed by sev- 

eral researchers using the extended finite element method (X- 

FEM) [17,18] , mesh-free methods [19,20] , generalized finite ele- 

ment method (G-FEM) [21] , and the element carving/trimming 

scheme [22] . In all of them, basically, a background mesh with 

square elements is used to cover the entire domain of problems. 

To identify each material phase on the background mesh, the 

level-set method [23] has been frequently used. In the level-set 

method, object boundaries are represented implicitly using the 

minimum signed distance function (SDF) values as nodal vari- 

ables. Especially, when the level-set method is combined with the 

aforementioned multi-material modeling scheme such as the X- 

FEM, it provides an efficient modeling tool for dealing with var- 

ious singularities including cracks, multi-material interfaces, dis- 

locations and so forth without remeshing. It also allows one ele- 

ment to cover multi-material constituents with a subdomain (dis- 

tinguished by the signed distance)-wise Gauss integration. In con- 

trast, in the element carving/trimming scheme, the elements cross- 

ing multi-material interfaces are locally trimmed so that each el- 

ement cover only one material. In other words, this scheme splits 

the square elements in the background mesh to several polygon- 

shaped pieces. In particular, when the trimmed square elements, 

which are polygonal-shaped, is further divided into three-node 

triangle elements in the two-dimensional (2D) domain (six-node 

prism elements in the three-dimensional (3D) domain), FE mod- 

els obtained by this scheme can be directly used in FE analysis by 

means of any commercial FE software such as ABAQUS. 

The goal of this work was to propose a simple and accu- 

rate multi-material modeling scheme using the SDF based bound- 

ary smoothing and element trimming techniques. The remainder 

of this paper is organized as follows. In Section 2 , we explain 

how to construct trimmed FE meshes to fit multi-material in- 

terfaces represented by the SDF. This is followed by an element 

merging scheme to enhance the mesh quality. Some distorted 

and small-area elements, which can be generated during the el- 

ement trimming, should be merged into large elements to avoid 

the ill-conditioning or nearly zero values of the stiffness matrix. 

This manipulation can thus provide accurate solutions compara- 

ble to those of conventional FE meshes with CAD files. Next, in 

Section 3 , to verify the efficiency and accuracy of the proposed 

scheme compared with other numerical schemes, we solve bench- 

mark problems regarding plates containing a hole or an inclusion. 

In Section 4 , we show the effectiveness of the proposed scheme in 

the FE modeling of UD composites with complex fiber configura- 

tions, which are acquired from image processing. Finally, we finish 

the paper with concluding remarks in Section 5 . 

2. Multi-material representation using the SDF based boundary 

smoothing and element trimming 

2.1. SDF based boundary smoothing algorithm 

Consider an analysis domain covered by square-background el- 

ements. Fig. 1 shows two material regions, �1 and �2 , and their 

interface, ∂�= �1 ∩ �2 . If a few objects are located in the domain, 

the material interface is represented using the minimum SDF. For 

any material point x in the domain at time t , the minimum SDF 

φ( x , t ) is defined as the minimum distance between the nodes of 

the square elements and the material interfaces which is a scalar 

variable independently defined at the nodes. The zero SDF value 

( φ( x , t ) = 0) corresponds to the interface of the two materials. For 

the case of multi-materials ( n -materials), the independent vari- 

ables, for which the number is ( n − 1), have to be considered at 

the nodes. With this concept, the X-FEM has reported remarkable 

successes for many singularity problems [17,18] without additional 

local remeshing because it describes the material interfaces implic- 

itly using the SDF. However, in our approach, we explicitly split 

the square elements crossing multi-material boundaries into sev- 

eral polygon-shaped pieces (see Fig. 2 (a)) which are represented 

by the combination of simple three-node triangle elements in the 

2D domain (six-node prism elements in the 3D domain) shown in 

Fig. 2 (b). As a result, using element trimming based on the SDF 

values, all of the material boundaries have a smoothed representa- 

tion. 

Before calculating the SDF values, a high-quality image should 

be first prepared. To obtain an image with local contrast enhance- 

ment and noise reduction, we conduct a preprocessing using two 

well-known image filters; a median filter taking the median value 

to remove speckles/dots on an image, and a Gaussian high-pass fil- 

ter to sharpen an image. The two filters are supported by MATLAB 

image processing toolbox [24] . Subsequently, for a given black-and- 

white patterned image passed through the filters, we consider the 

following two techniques to define the minimum SDF for detecting 

material boundaries. 

The first way of obtaining SDF values from raw images is to 

solve iteratively a level-set equation given by Eq. (1) on square- 

type background meshes, until the solution of the level-set equa- 

tion is converged to constant values within a tolerance limit 

[23,25] : 

∂φ(x , t) 

∂t 
+ 

�
 ν ∇φ = 0 , (1) 

where the minimum SDF φ should satisfy the following properties; 

φ(x , t) < 0 for x ∈ �1 , (2) 

φ(x , t) > 0 for x ∈ �2 , (3) 

φ(x , t) = 0 for x ∈ ∂�. (4) 

When the normal component νN of velocity � ν is taken, Eq. (1) be- 

comes the following partial differential equation: 

∂φ(x, y ) 

∂t 
+ νN | ∇φ| = 0 . (5) 

Considering the curvature-based level-set evolution, or mean 

curvature flow, with a curvature-based force that smoothes the 

curve, νN = −b κ , Eq. (5) can be rewritten as [25] 

∂φ(x, y ) 

∂t 
= bκ| ∇φ| , (6) 

where κ is the curvature, and b is a weighting parameter for the 

curvature-based force. Eq. (6) can be discretized using central dif- 

ferencing with a uniform Cartesian grid. In this work, we use an 
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