Advances in Engineering Software 105 (2017) 1-8

ENGINEERING

SOFTWARE

Advances in Engineering Software N
journal homepage: www.elsevier.com/locate/advengsoft »

Contents lists available at ScienceDirect

Research paper

MUESLI - a Material UnivErSal Library

® CrossMark

David Portillo"<, Daniel del Pozo¢, Daniel Rodriguez-Galan¢, Javier Segurado®<,

Ignacio Romero "<+

2 Dept. Material Science ETSI Caminos, Technical University of Madrid, Spain
b Dept. Mechanical Engineering ETSI Industriales, Technical University of Madrid, Spain
¢IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 4 July 2016

Revised 14 October 2016
Accepted 17 January 2017
Available online 21 January 2017

Keywords: faces are provided.
Material modeling

Open source

Software library

Automatic testing

This article describes MUESLI, an open source library with constitutive models of continuum materials
for solid, fluid, and thermal problems available at http://www.materials.imdea.org/Muesli. The library is
object oriented, and includes the most commonly employed material models in Computational Mechan-
ics. It is designed for easy extension, and includes classes for tensor manipulation and automatic testing.
The library can be linked to existing codes, including commercial ones, for some of which specific inter-

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Material modeling is at the core of Computational Mechanics.
As a result, most research and commercial simulation codes for
Mechanics have routines in their kernels that compute material re-
sponse. These are responsible for calculating the response of mate-
rial points when subjected to deformation, thermal loads, chemical
changes, etc. Many researchers and code developers in this disci-
pline have, at some point, implemented standard material mod-
els such as elasticity, plasticity, viscoelasticity (for small and large
strain kinematics), Fourier’s law, compressible and incompressible
fluid response, complex fluids, coupled models, etc. Despite the
apparent common interests identified above, there does not seem
to be, to the authors’ knowledge, a common effort to provide a
clear, robust, extendable, reusable, and reliable collection of mate-
rial routines that can speed up the development of new models,
and simplify the exchange of existing ones.

The formulation of material models for continuum applications
has reached a mature state that reflects on the publication of
books and monographs that share much of their contents, in this
respect. After the monumental work of Truesdell and Noll [1],

* Corresponding author.

E-mail addresses: david.portillo@upm.es (D. Portillo), daniel.pozo@imdea.org
(D. del Pozo), daniel.rodriguez@imdea.org (D. Rodriguez-Galan),
javier.segurado@imdea.org {J. Segurado), ignacio.romero@imdea.org,
ignacio.romero@upm.es (I. Romero).

http://dx.doi.org/10.1016/j.advengsoft.2017.01.007
0965-9978/© 2017 Elsevier Ltd. All rights reserved.

much of the formalism for continuum material modeling, and even
the notation to some extent, has become standard. One can find
(parts of) this common body of knowledge in well-known books
such as [2-7].

One of the aspects of this theory that has become unani-
mously accepted is the use of tensor algebra as the most conve-
nient language to describe material behavior. Whether for work-
ing with stresses, or the material tangent elasticities, tensors pro-
vide the natural arena and mathematical formalism to manipu-
late these mechanical concepts. In Computational Mechanics, how-
ever, Voigt's notation has been very widely employed to represent
second and fourth order tensors [8]. This notation maps second
and fourth order tensors to vectors and matrices, respectively, at
the expense of using cumbersome algebraic operations (cf., e.g.,
[9]). Although using Voigt's notation is not strictly required for
many numerical methods [10], it can be argued that its widespread
use follows from the choice of Fortran in the initial developments
of simulation codes. These days, more sophisticated programming
languages such as C++, possess operator overloading allowing the
implementation of material models in a way that closely mimics
the mathematical description of standard references. Either using
index or compact notation, overloaded operations can be made as
fast as matrix operations in Voigt's, or even faster, if using, for ex-
ample, sophisticated template metaprogramming [11].

A second aspect in the use of material models that has changed
over the years is related to the proliferation of commercial and re-
search simulation codes. Indeed, as a result of the relative matu-
rity of Computational Mechanics and the wide availability of open


http://dx.doi.org/10.1016/j.advengsoft.2017.01.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.01.007&domain=pdf
http://www.materials.imdea.org/Muesli
mailto:david.portillo@upm.es
mailto:daniel.pozo@imdea.org
mailto:daniel.rodriguez@imdea.org
mailto:javier.segurado@imdea.org
mailto:ignacio.romero@imdea.org
mailto:ignacio.romero@upm.es
http://dx.doi.org/10.1016/j.advengsoft.2017.01.007

2 D. Portillo et al./Advances in Engineering Software 105 (2017) 1-8

source libraries most research groups possess their own code and
also access to commercial software such as Abaqus, Ansys, Fluent,
Nastran, etc. Since the data structures of research and commercial
codes need not be the same, and often not even the programming
language, sharing the material models is not straightforward. Some
may decide upfront to develop material models for commercial
codes using the available user routines, adhering to the software’s
interface and programming language. The alternative route, devel-
oping models for one’s own code might be faster and simpler but
does not allow to benefit from all the tools at one’s disposal when
using commercial codes.

The reasons listed above indicate that it would be beneficial to
the Computational Mechanics community to have access to a ma-
terial library that includes common models, simplifies the develop-
ment of new ones, and allows for easy sharing between commer-
cial and research codes. Having already identified these needs, we
describe in this article MUESLI, a Material UnivErSal Llbrary, de-
signed to overcome all of them and to be accessible as open source
code for all developers. One of the main initial decisions has been
to develop the library in C++, an object oriented language that can
take advantage of this feature to structure materials in families
and subfamilies. In addition, and as mentioned above, the operator
overloading capacity of this language makes the implementation as
natural as possible.

The library currently provides support for three-dimensional
small strain and finite strain solid materials, fluid materials, ther-
mal materials, and coupled models. Overall there are almost
twenty models in version 1.0 of the library, covering the basic,
most commonly employed materials. All these material models are
developed according to the library’s design guidelines, but inter-
faces are provided to Abaqus and LS-Dyna. Users of the library can
extend it by adding their own models to the existing families. In
the future, we plan to grow the library by adding more materials
and interfaces.

A final feature that is often required from scientific computing
codes is the ability to provide some kind of checks regarding the
correctness of the implementation. For material models, it is often
the case that there is an energy (elastic, thermal, etc.) from which
stresses or other gradients are derived; in addition, the lineariza-
tion of the latter is required for the iterative solution of nonlinear
problems. With this in mind, MUESLI provides a limited suit of
checks for each material family, checks that can be used to verify
the correctness of the implementation, up to a certain extent. For
complex models, these checks can be of great aid in identifying
bugs and other sources of error.

To better understand the context in which MUESLI has ap-
peared, we mention similar efforts developed in the Computa-
tional Mechanics and Material community. Regarding commercial
software, the library Digimat [12]| provides a large database of
models for composite materials, including multiscale analysis; Z-
mat [13] includes mechanical and thermal constitutive laws for
many elastic and inelastic materials, and provides an interface
with ABAQUS. Neither of these libraries can be extended by the
user, and their code is closed. PolyUMod [14], focused on consti-
tutive models for polymers, has a free version and a commercial
one, but are both closed as well. The open-source MFront library
[15] shares with MUESLI the goal to provide general constitutive
material models for several simulation codes. The approach of the
two projects, however, is different: MFront defines a meta-language
for the high-level description of material behavior which is then
converted to C++ code, in the form that is suitable for certain fi-
nite element codes. MFront is much larger than MUESLI, and as a
result, more complex.

The remainder of the article is organized in the following way:
Section 2 describes the main concepts and philosophy behind
MUESLI. Section 3 explains how the library can be linked with

material materialPoint

conductorMaterial conductorMP

i
(et

finiteStrainMP

1

finiteStrainMaterial ‘

fluidMaterial fluidMP

smallStrainMaterial smallStrainMP

1
T

smallThermomechanicalMaterial ‘ smallThermomechanicalMP ‘

Fig. 1. Material families in MUESLI, as defined by the material classes and their
corresponding materialPoint counterparts.

existing codes and Section 4 outlines its automatic checking capa-
bilities. Section 6 summarizes the main aspects of the library and
provides details to obtain it.

2. Structure and software design

MUESLI is an object oriented library designed to implement
the constitutive behavior of materials at the continuum level.
While the analytical definition of the material responses are fairly
standard, at least for many models, the organization and structure
of the library is completely original. It has been designed to offer
developers the maximum simplicity, without sacrificing the capac-
ity to implement the most involved material models currently used
in Computational Mechanics.

2.1. Material families

Materials are used, in a broad sense, in every device, part,
or structure. When using simulation tools to analyze these ele-
ments, material models are employed in very different ways. The
design of a material library needs to encompass many of these
needs if it is to be used by diverse types of users. MUESLI
has been developed with this generality in mind, and classes are
structured into material families. Each of these refers to (one or)
materials with the same interface and needs. For example, the
smallStrainMaterial family defines the interface and mini-
mal requirements of materials employed in mechanical simulations
with small strain kinematics. In some cases a material family might
delegate part of its implementation to other, previously defined,
family. For instance, the smallThermomechanicalMaterial
defines the interface for coupled thermo-mechanical response. The
purely mechanical response in these models is entrusted to the
smallStrainMaterial class, while the coupled material takes
care of the coupling and the thermal part. See Fig. 1 for an illus-
tration of the currently implemented families in MUESLI.

2.2. Materials and material points

The fundamental concepts in MUESLI are those of material and
material point and are implemented in the classes material and
materialPoint, respectively. The first one embodies the idea of
abstract material, an entity which can spawn materialPoints
and hold common data for all the children. Using the terminology
of software development, each specific material includes a fac-
tory method. The second one is the one that represents individual
points in real continuum bodies: each of them having a specific
material constitutive behavior and aware of its past history.

Fig. 2 illustrates the concepts of material and
materialPoint. When creating a computational model of a
continuum, the analyst must decide which materials it is going



Download English Version:

https://daneshyari.com/en/article/4978030

Download Persian Version:

https://daneshyari.com/article/4978030

Daneshyari.com


https://daneshyari.com/en/article/4978030
https://daneshyari.com/article/4978030
https://daneshyari.com

