
Advances in Engineering Software 105 (2017) 1–8 

Contents lists available at ScienceDirect 

Advances in Engineering Software 

journal homepage: www.elsevier.com/locate/advengsoft 

Research paper 

MUESLI - a Material UnivErSal LIbrary 

David Portillo 

b , c , Daniel del Pozo 

c , Daniel Rodríguez-Galán 

c , Javier Segurado 

a , c , 
Ignacio Romero 

b , c , ∗

a Dept. Material Science ETSI Caminos, Technical University of Madrid, Spain 
b Dept. Mechanical Engineering ETSI Industriales, Technical University of Madrid, Spain 
c IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain 

a r t i c l e i n f o 

Article history: 

Received 4 July 2016 

Revised 14 October 2016 

Accepted 17 January 2017 

Available online 21 January 2017 

Keywords: 

Material modeling 

Open source 

Software library 

Automatic testing 

a b s t r a c t 

This article describes MUESLI , an open source library with constitutive models of continuum materials 

for solid, fluid, and thermal problems available at http://www.materials.imdea.org/Muesli . The library is 

object oriented, and includes the most commonly employed material models in Computational Mechan- 

ics. It is designed for easy extension, and includes classes for tensor manipulation and automatic testing. 

The library can be linked to existing codes, including commercial ones, for some of which specific inter- 

faces are provided. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Material modeling is at the core of Computational Mechanics. 

As a result, most research and commercial simulation codes for 

Mechanics have routines in their kernels that compute material re- 

sponse. These are responsible for calculating the response of mate- 

rial points when subjected to deformation, thermal loads, chemical 

changes, etc. Many researchers and code developers in this disci- 

pline have, at some point, implemented standard material mod- 

els such as elasticity, plasticity, viscoelasticity (for small and large 

strain kinematics), Fourier’s law, compressible and incompressible 

fluid response, complex fluids, coupled models, etc. Despite the 

apparent common interests identified above, there does not seem 

to be, to the authors’ knowledge, a common effort to provide a 

clear, robust, extendable, reusable, and reliable collection of mate- 

rial routines that can speed up the development of new models, 

and simplify the exchange of existing ones. 

The formulation of material models for continuum applications 

has reached a mature state that reflects on the publication of 

books and monographs that share much of their contents, in this 

respect. After the monumental work of Truesdell and Noll [1] , 

∗ Corresponding author. 

E-mail addresses: david.portillo@upm.es (D. Portillo), daniel.pozo@imdea.org 

(D. del Pozo), daniel.rodriguez@imdea.org (D. Rodríguez-Galán), 

javier.segurado@imdea.org (J. Segurado), ignacio.romero@imdea.org , 

ignacio.romero@upm.es (I. Romero). 

much of the formalism for continuum material modeling, and even 

the notation to some extent, has become standard. One can find 

(parts of) this common body of knowledge in well-known books 

such as [2–7] . 

One of the aspects of this theory that has become unani- 

mously accepted is the use of tensor algebra as the most conve- 

nient language to describe material behavior. Whether for work- 

ing with stresses, or the material tangent elasticities, tensors pro- 

vide the natural arena and mathematical formalism to manipu- 

late these mechanical concepts. In Computational Mechanics, how- 

ever, Voigt’s notation has been very widely employed to represent 

second and fourth order tensors [8] . This notation maps second 

and fourth order tensors to vectors and matrices, respectively, at 

the expense of using cumbersome algebraic operations (cf., e.g., 

[9] ). Although using Voigt’s notation is not strictly required for 

many numerical methods [10] , it can be argued that its widespread 

use follows from the choice of Fortran in the initial developments 

of simulation codes. These days, more sophisticated programming 

languages such as C++, possess operator overloading allowing the 

implementation of material models in a way that closely mimics 

the mathematical description of standard references. Either using 

index or compact notation, overloaded operations can be made as 

fast as matrix operations in Voigt’s, or even faster, if using, for ex- 

ample, sophisticated template metaprogramming [11] . 

A second aspect in the use of material models that has changed 

over the years is related to the proliferation of commercial and re- 

search simulation codes. Indeed, as a result of the relative matu- 

rity of Computational Mechanics and the wide availability of open 

http://dx.doi.org/10.1016/j.advengsoft.2017.01.007 

0965-9978/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.advengsoft.2017.01.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.01.007&domain=pdf
http://www.materials.imdea.org/Muesli
mailto:david.portillo@upm.es
mailto:daniel.pozo@imdea.org
mailto:daniel.rodriguez@imdea.org
mailto:javier.segurado@imdea.org
mailto:ignacio.romero@imdea.org
mailto:ignacio.romero@upm.es
http://dx.doi.org/10.1016/j.advengsoft.2017.01.007


2 D. Portillo et al. / Advances in Engineering Software 105 (2017) 1–8 

source libraries most research groups possess their own code and 

also access to commercial software such as Abaqus, Ansys, Fluent, 

Nastran, etc. Since the data structures of research and commercial 

codes need not be the same, and often not even the programming 

language, sharing the material models is not straightforward. Some 

may decide upfront to develop material models for commercial 

codes using the available user routines , adhering to the software’s 

interface and programming language. The alternative route, devel- 

oping models for one’s own code might be faster and simpler but 

does not allow to benefit from all the tools at one’s disposal when 

using commercial codes. 

The reasons listed above indicate that it would be beneficial to 

the Computational Mechanics community to have access to a ma- 

terial library that includes common models, simplifies the develop- 

ment of new ones, and allows for easy sharing between commer- 

cial and research codes. Having already identified these needs, we 

describe in this article MUESLI , a Material UnivErSal LIbrary, de- 

signed to overcome all of them and to be accessible as open source 

code for all developers. One of the main initial decisions has been 

to develop the library in C++, an object oriented language that can 

take advantage of this feature to structure materials in families 

and subfamilies. In addition, and as mentioned above, the operator 

overloading capacity of this language makes the implementation as 

natural as possible. 

The library currently provides support for three-dimensional 

small strain and finite strain solid materials, fluid materials, ther- 

mal materials, and coupled models. Overall there are almost 

twenty models in version 1.0 of the library, covering the basic, 

most commonly employed materials. All these material models are 

developed according to the library’s design guidelines, but inter- 

faces are provided to Abaqus and LS-Dyna. Users of the library can 

extend it by adding their own models to the existing families. In 

the future, we plan to grow the library by adding more materials 

and interfaces. 

A final feature that is often required from scientific computing 

codes is the ability to provide some kind of checks regarding the 

correctness of the implementation. For material models, it is often 

the case that there is an energy (elastic, thermal, etc.) from which 

stresses or other gradients are derived; in addition, the lineariza- 

tion of the latter is required for the iterative solution of nonlinear 

problems. With this in mind, MUESLI provides a limited suit of 

checks for each material family, checks that can be used to verify 

the correctness of the implementation, up to a certain extent. For 

complex models, these checks can be of great aid in identifying 

bugs and other sources of error. 

To better understand the context in which MUESLI has ap- 

peared, we mention similar effort s developed in the Computa- 

tional Mechanics and Material community. Regarding commercial 

software, the library Digimat [12] provides a large database of 

models for composite materials, including multiscale analysis; Z- 

mat [13] includes mechanical and thermal constitutive laws for 

many elastic and inelastic materials, and provides an interface 

with ABAQUS. Neither of these libraries can be extended by the 

user, and their code is closed. PolyUMod [14] , focused on consti- 

tutive models for polymers, has a free version and a commercial 

one, but are both closed as well. The open-source MFront library 

[15] shares with MUESLI the goal to provide general constitutive 

material models for several simulation codes. The approach of the 

two projects, however, is different: MFront defines a meta-language 

for the high-level description of material behavior which is then 

converted to C++ code, in the form that is suitable for certain fi- 

nite element codes. MFront is much larger than MUESLI , and as a 

result, more complex. 

The remainder of the article is organized in the following way: 

Section 2 describes the main concepts and philosophy behind 

MUESLI . Section 3 explains how the library can be linked with 

Fig. 1. Material families in MUESLI , as defined by the material classes and their 

corresponding materialPoint counterparts. 

existing codes and Section 4 outlines its automatic checking capa- 

bilities. Section 6 summarizes the main aspects of the library and 

provides details to obtain it. 

2. Structure and software design 

MUESLI is an object oriented library designed to implement 

the constitutive behavior of materials at the continuum level. 

While the analytical definition of the material responses are fairly 

standard, at least for many models, the organization and structure 

of the library is completely original. It has been designed to offer 

developers the maximum simplicity, without sacrificing the capac- 

ity to implement the most involved material models currently used 

in Computational Mechanics. 

2.1. Material families 

Materials are used, in a broad sense, in every device, part, 

or structure. When using simulation tools to analyze these ele- 

ments, material models are employed in very different ways. The 

design of a material library needs to encompass many of these 

needs if it is to be used by diverse types of users. MUESLI 

has been developed with this generality in mind, and classes are 

structured into material families . Each of these refers to (one or) 

materials with the same interface and needs. For example, the 

smallStrainMaterial family defines the interface and mini- 

mal requirements of materials employed in mechanical simulations 

with small strain kinematics. In some cases a material family might 

delegate part of its implementation to other, previously defined, 

family. For instance, the smallThermomechanicalMaterial 
defines the interface for coupled thermo-mechanical response. The 

purely mechanical response in these models is entrusted to the 

smallStrainMaterial class, while the coupled material takes 

care of the coupling and the thermal part. See Fig. 1 for an illus- 

tration of the currently implemented families in MUESLI . 

2.2. Materials and material points 

The fundamental concepts in MUESLI are those of material and 

material point and are implemented in the classes material and 

materialPoint , respectively. The first one embodies the idea of 

abstract material , an entity which can spawn materialPoints 
and hold common data for all the children. Using the terminology 

of software development, each specific material includes a fac- 

tory method . The second one is the one that represents individual 

points in real continuum bodies: each of them having a specific 

material constitutive behavior and aware of its past history. 

Fig. 2 illustrates the concepts of material and 

materialPoint . When creating a computational model of a 

continuum, the analyst must decide which materials it is going 



Download English Version:

https://daneshyari.com/en/article/4978030

Download Persian Version:

https://daneshyari.com/article/4978030

Daneshyari.com

https://daneshyari.com/en/article/4978030
https://daneshyari.com/article/4978030
https://daneshyari.com

