
Advances in Engineering Software 105 (2017) 9–16

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

Abaqus2Matlab: A suitable tool for finite element post-processing

George Papazafeiropoulos a , Miguel Muñiz-Calvente

b , Emilio Martínez-Pañeda

c , ∗

a Department of Structural Engineering, National Technical University of Athens, Zografou, Athens 15780, Greece
b Department of Construction and Manufacturing Engineering, University of Oviedo, Gijón 33203, Spain
c Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark

a r t i c l e i n f o

Article history:

Received 20 November 2016

Revised 4 January 2017

Accepted 17 January 2017

Available online 25 January 2017

Keywords:

Abaqus2Matlab

Post-processing

Finite Element Method

Weibull stress model

Inverse analysis

a b s t r a c t

A suitable piece of software is presented to connect Abaqus, a sophisticated finite element package, with

Matlab, the most comprehensive program for mathematical analysis. This interface between these well-

known codes not only benefits from the image processing and the integrated graph-plotting features of

Matlab but also opens up new opportunities in results post-processing, statistical analysis and mathemat-

ical optimization, among many other possibilities. The software architecture and usage are appropriately

described and two problems of particular engineering significance are addressed to demonstrate its capa-

bilities. Firstly, the software is employed to assess cleavage fracture through a novel 3-parameter Weibull

probabilistic framework. Then, its potential to create and train neural networks is used to identify damage

parameters through a hybrid experimental–numerical scheme, and model crack propagation in structural

materials by means of a cohesive zone approach. The source code, detailed documentation and a large

number of tutorials can be freely downloaded from www.abaqus2matlab.com .

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Partial Differential Equations (PDEs) govern the physics of most

engineering systems. As analytical solutions are limited and gen-

erally restricted to idealized cases, the development of efficient

and robust numerical methods marks a milestone in the solution

of boundary value problems in structural mechanics, electromag-

netism, heat transfer, mass diffusion and fluid dynamics, among

many other disciplines. The Finite Element Method (FEM) has be-

come the leading numerical technique for solving PDEs in the me-

chanical, civil, aeronautical and bioengineering industries. Among

the wide range of packages available, Abaqus [1] is undoubtedly

one of the most popular finite element tools for academics and

practitioners.

However, practical applications often require considering

non-linear conditions, where uncertainties hinder high fidelity

numerical predictions. In such circumstances, the use of advanced

analysis methodologies – such as inverse approaches, statistical

tools or hybrid experimental–numerical techniques – has proven

to compensate the lack of information, yielding results that are

otherwise unobtainable. Matlab [2] , a multi-paradigm computing

environment, is generally considered to be the most powerful soft-

ware in this regard due to its advanced capabilities in statistics,

∗ Corresponding author.

E-mail address: mail@empaneda.com (E. Martínez-Pañeda).

machine learning, neural networks, curve fitting, model-based cal-

ibration and optimization. Yet, a connection between the two most

used packages in, respectively, finite element modeling and math-

ematical analysis, is still lacking. To fill this gap, a novel software

tool is here proposed: Abaqus2Matlab , which allows to run Abaqus

directly from Matlab and to post-process the results, providing

a link between the two well-known packages in a non-intrusive

and versatile manner. The present proposal enjoys the benefits of

Matlab’s user friendly and centralized environment, as opposed

other powerful tools like Python, which require add-on libraries.

Abaqus2Matlab is distributed as source code with the aim of fa-

cilitating research. Numerous codes have been made freely avail-

able through the years, positively impacting the computational

mechanics community. For instance, Sigmund and co-workers pre-

sented an efficient topology optimization implementation [3,4] ,

Bordas and collaborators [5–7] described an object-oriented pro-

gramming library for the extended finite element method (X-FEM)

and meshless methods, Giner et al. [8] implemented the X-FEM in

Abaqus through a user subroutine, Parks and Paulino [9] described

the numerical implementation of the PPR potential-based cohe-

sive zone model, Nguyen [10] proposed an open source program

to generate zero-thickness cohesive elements and Martínez-Pañeda

and Gallego [11] provided a user subroutine to effectively define

the material property variation of functionally graded materials in

Abaqus. Other open-source software that has recently contributed

to scientific progress includes FReET [12] , a code to conduct sta-

tistical, sensitivity and reliability assessment; FraMePID-3PB [13] ,

http://dx.doi.org/10.1016/j.advengsoft.2017.01.006

0965-9978/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.advengsoft.2017.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.01.006&domain=pdf
http://www.abaqus2matlab.com
mailto:mail@empaneda.com
http://dx.doi.org/10.1016/j.advengsoft.2017.01.006

10 G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16

a tool to identify fracture parameters in concrete through inverse

analysis; NiHu [14] , an open source C++ library for the bound-

ary element method; ESFM [15] , a general framework for mesh-

less methods; NOSA-ITACA [16] , a finite element code for masonry

structures; PCLab [17] , an object-oriented Monte Carlo/Finite Ele-

ment software; and, μMECH [18] , an open source C/C++ library of

analytical solutions to classical micromechanical problems.

The present manuscript is organized as follows. The software

framework and architecture are explained in the following section.

Then, Section 3 provides usage instructions through simple exam-

ples. Section 4 shows the capabilities of the toolbox by addressing

two relevant engineering applications; namely, probabilistic anal-

ysis of cleavage fracture and inverse identification of damage pa-

rameters through neural networks. Finally, the work is summarized

in Section 5 .

2. Abaqus2Matlab

The main internal characteristics of Abaqus2Matlab are de-

scribed below. The structure of Abaqus results (∗.fil) file is briefly

described in the first place, as it is necessary to understand how

the presented software stores Abaqus results. The reading pro-

cedure is then detailed and insight is given into the software

architecture.

2.1. Creating and processing Abaqus’ results (∗.fil) file

The results (∗.fil) file can be used to transfer Abaqus analysis

results to other packages. The aforementioned file can be written

in binary or ASCII format, depending on the need for porting re-

sults between dissimilar operating systems. ASCII format is chosen

in the present approach due to its versatility.

2.1.1. Generation of Abaqus results (∗.fil) file

The Abaqus results file is obtained in ascii format by defin-

ing specific options in the input (∗.inp) or restart (∗.res) files. The

results file generation procedure differs between Abaqus/Standard

and Abaqus/Explicit, ∗FILE FORMAT, ASCII must be specified in the

former and

∗FILE OUTPUT in the latter. The reader is referred to

Abaqus documentation for more details.

2.1.2. Output

The following output types can be written to the results file: el-

ement, nodal, energy, modal, contact surface, element matrix, sub-

structure matrix and cavity radiation factor. Nodes and elements

are numbered globally in models that have been defined as an as-

sembly of part instances. A map between user-defined numbers

and internal numbers is printed to the data file (∗.dat) if any out-

put requested includes node and element numbers. Set and surface

names that appear in the results file are given along with their cor-

responding assembly and part instance names, separated by under-

scores.

2.1.3. Record format

The results (∗.fil) file is a sequential file that must be read up

to the location of the desired data. All data items are converted

into equivalent character strings and written in (logical) records.

Each single line contains a series of 80 string characters, which

may contain the full record or part of it. In the latter case, af-

ter completely filling the first line, the record string continues at

subsequent lines. The beginning of each record is indicated by an

asterisk (∗) and the data items are arranged immediately behind

each other within each record. Each record has the format shown

in Table 1 .

The location number denotes the position in the record where

a series of consecutive data items are written. The number of data

Table 1

Format of a record written in an Abaqus re-

sults file.

Location Length Description

1 1 Record length (L)

2 1 Record type key

3 (L −2) Attributes

Listing 1. Function Fil2str.m to read Abaqus resul ts (∗ .fil) file.

items in each series is denoted by the length number. The first data

item is an integer denoting the number of data items in the record.

The second one defines the record type key, an indicator denoting

the type of data. And finally the attributes are contained in a series

of L −2 data items, at the 3rd position of a record.

2.1.4. Data item format

Integer numbers are denoted by the character I, followed by a

two digit integer which shows the number of the digits of the in-

teger with the value of the integer following. On the other hand,

floating point numbers begin with the character D, followed by the

number in the format E22.15 or D22.15, depending on the preci-

sion. And character strings begin with the character A, followed by

eight characters. If the length of a character string is less than 8,

then the trailing positions are filled with blank spaces. If the length

of a character string is larger than 8, then the character string is

written in consecutive character strings, eight characters at a time.

2.2. Reading Abaqus results files with Abaqus2Matlab

A function named Fil2str is defined in Matlab to read the

Abaqus results (∗.fil) file by considering the data as a string and

concatenating lines horizontally, as shown in Listing 1 .

The function is programmed so as to allow compatibility be-

tween different MATLAB versions. The information from the re-

sults file is stored in a cell array C containing a single line string.

That single line string subsequently enters an ad hoc function

that depends on the results that the user wishes to post-process.

Thus, more than 50 different functions are already available in

Abaqus2Matlab , covering the vast majority of results types that can

be obtained in Abaqus; new record functions can be easily gener-

ated from the existing template. An appropriate naming conven-

tion is adopted, where each function is defined by the word Rec
followed by the record key of the particular type of results. Record

keys for each specific set of results can be found in Abaqus doc-

umentation. For example, nodal coordinates (record key 1901) are

obtained through function Rec1901.m , whose code is shown in

Listing 2 .

Download English Version:

https://daneshyari.com/en/article/4978031

Download Persian Version:

https://daneshyari.com/article/4978031

Daneshyari.com

https://daneshyari.com/en/article/4978031
https://daneshyari.com/article/4978031
https://daneshyari.com

