
Advances in Engineering Software 105 (2017) 30–47

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

Grasshopper Optimisation Algorithm: Theory and application

Shahrzad Saremi a , b , Seyedali Mirjalili a , b , ∗, Andrew Lewis a

a School of Information and Communication Technology, Griffith University, Nathan, Brisbane, QLD 4111, Australia
b Griffith College, Mt Gravatt, Brisbane, QLD 4122, Australia

a r t i c l e i n f o

Article history:

Received 29 October 2016

Accepted 10 January 2017

Available online 31 January 2017

Keywords:

Optimization

Optimization techniques

Heuristic algorithm

Metaheuristics

Constrained optimization

Benchmark

Algorithm

a b s t r a c t

This paper proposes an optimisation algorithm called Grasshopper Optimisation Algorithm (GOA) and ap-

plies it to challenging problems in structural optimisation. The proposed algorithm mathematically mod-

els and mimics the behaviour of grasshopper swarms in nature for solving optimisation problems. The

GOA algorithm is first benchmarked on a set of test problems including CEC2005 to test and verify its

performance qualitatively and quantitatively. It is then employed to find the optimal shape for a 52-bar

truss, 3-bar truss, and cantilever beam to demonstrate its applicability. The results show that the pro-

posed algorithm is able to provide superior results compared to well-known and recent algorithms in the

literature. The results of the real applications also prove the merits of GOA in solving real problems with

unknown search spaces.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The process of finding the best values for the variables of a

particular problem to minimise or maximise an objective func-

tion is called optimisation. Optimisation problems exist in different

fields of studies. To solve an optimisation problem, different steps

need to be taken. Firstly, the parameters of the problem should

be identified. Based on the nature of the parameters, problems

may be classified as continuous or discrete. Secondly, the con-

straints that are applied to the parameters have to be recognised

[1] . Constraints divide the optimisation problems into constrained

and unconstrained. Thirdly, the objectives of the given problem

should be investigated and considered. In this case, optimisation

problems are classified into single-objective versus multi-objective

problems [2] . Finally, based on the identified types of parameters,

constraints, and number of objectives a suitable optimiser should

be chosen and employed to solve the problem.

Mathematical optimisation mainly relies on gradient-based in-

formation of the involved functions in order to find the optimal

solution. Although such techniques are still being used by different

researchers, they have some disadvantages. Mathematical optimi-

sation approaches suffer from local optima entrapment. This refers

to an algorithm assuming a local solution is the global solution,

thus failing to obtain the global optimum. They are also often inef-

fective for problems with unknown or computationally expensive

∗ Corresponding author.

E-mail address: seyedali.mirjalili@griffithuni.edu.au (S. Mirjalili).

URL: http://www.alimirjalili.com (S. Mirjalili)

derivation [3] . Another type of optimisation algorithm that allevi-

ates these two drawbacks is stochastic optimisation [4] .

Stochastic methods rely on random operators that allow them

to avoid local optima. They all start optimisation process by creat-

ing one or a set of random solutions for a given problem. In con-

trast to mathematical optimisation techniques, they do not need

to calculate the gradient of a solution, just evaluating the solutions

using the objective function(s). Decisions as to how to improve the

solutions are made based on the calculated objective values. There-

fore, the problem is considered as a black box, which is a very use-

ful mechanism when solving real problems with unknown search

spaces. Due to these advantages, stochastic optimisation techniques

have become very popular over the past two decades [5] .

Among stochastic optimisation approaches, nature-inspired,

population-based algorithms are the most popular [6] . Such tech-

niques mimic natural problems-solving methods, often those used

by creatures. Survival is the main goal for all creatures. To achieve

this goal, they have been evolving and adapting in different ways.

Therefore, it is wise to seek inspiration from nature as the best

and oldest optimiser on the planet. Such algorithms are classified

into two main groups: single-solutions-based and multi-solution-

based. In the former class, a single random solution is generated

and improved for a particular problem. In the latter class, how-

ever, multiple solutions are generated and enhanced for a given

problem. Multi-solution-based algorithms are more popular than

single-solution-based methods, as the literature shows [7] .

Multi-solution-based algorithms intrinsically have higher lo-

cal optima avoidance due to improving multiple solutions dur-

ing optimisation. In this case, a trapped solution in a local opti-

mum can be assisted by other solutions to jump out of the local

http://dx.doi.org/10.1016/j.advengsoft.2017.01.004

0965-9978/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.01.004&domain=pdf
mailto:seyedali.mirjalili@griffithuni.edu.au
http://www.alimirjalili.com
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004

S. Saremi et al. / Advances in Engineering Software 105 (2017) 30–47 31

optimum. Multiple solutions explore a larger portion of the search

space compared to single-solution-based algorithms, so the prob-

ability of finding the global optimum is high. Also, information

about the search space can be exchanged between multiple so-

lutions, which results in quick movement towards the optimum.

Although multi-solution-based algorithms have several advantages,

they require more function evaluations.

The most popular single-solution-based algorithms are hill

climbing [8] and simulated annealing [9] . Both algorithms follow

a similar idea, but the local optima avoidance of SA is higher due

to the stochastic cooling factor. Other recent single-solution-based

algorithms are Tabu Search (TS) [10,11] , and Iterated Local Search

(ILS) [12] . The most popular multi-solutions-based algorithms are

Genetic Algorithms (GA) [13] , Particle Swarm Optimisation (PSO)

[14] , Ant Colony Optimisation (ACO) [15] , and Differential Evolu-

tion (DE) [16] . The GA algorithm was inspired by the Darwinian

theory of evolution. In this algorithm, solutions are considered as

individuals and the parameters of solutions take the place of their

genes. Survival of the fittest individuals is the main inspiration of

this algorithm where the best individuals tend to participate more

in improving poor solutions. The PSO algorithm simulates the for-

aging of herds of birds or schools of fishes. In this algorithm the

solutions are improved with respect to the best solutions obtained

so far by each of the particles and the best solution found by the

swarm. The ACO algorithm mimics the collective behaviour of ants

in finding the shortest path from the nest to the source of foods.

Finally, DE utilises simple formulae combining the parameters of

existing solutions to improve the population of candidate solutions

for a given problem.

The similarity of both classes of nature-inspired algorithms is

the improvement of solutions until the satisfaction of an end cri-

terion and the division of optimisation process into two phases:

exploration versus exploitation [17] . Exploration refers to the ten-

dency for an algorithm to have highly randomised behaviour so

that the solutions are changed significantly. Large changes in the

solutions cause greater exploration of the search space and conse-

quently discovery of its promising regions. As an algorithm tends

toward exploitation, however, solutions generally face changes on

a smaller scale and tend to search locally. A proper balance of ex-

ploration and exploitation can result in finding the global optimum

of a given optimisation problem.

The literature shows that there are many recent swarm intelli-

gence optimisation techniques such as Dolphin Echolocation (DEL)

[18,19] , Firefly Algorithm (FA) [20,21] , Bat Algorithm (BA) [22] , and

Grey Wolf Optimizer (GWO) [3] . DEL and BA mimic echolocation of

dolphins in finding prey and bats navigating respectively. However,

FA simulates the mating behaviour of fireflies in nature. Cuckoo

Search (CS) [23,24] is another recent algorithm in this field, in

which the reproductive processes of cuckoos are employed to pro-

pose an optimisation algorithm. The GWO is also a swarm-based

technique that models the hunting mechanism of grey wolves.

There are also other algorithms with different inspiration in the

literature. For instance, State of Matter Search (SMS) [25,26] uses

the concepts of different phases in matter to optimise problems

and the Flower Pollination Algorithm (FPA) [27] has been inspired

by the survival and reproduction of flowers using pollination. There

is a question here as to why we need more algorithms despite the

many algorithms proposed so far.

The answer to this question is in the No Free Lunch (NFL) the-

orem [28] that logically has proven that there is no optimisation

technique for solving all optimisation problems. In other words,

algorithms in this field perform equally on average when consid-

ering all optimisation problems. This theorem, in part, has moti-

vated the rapidly increasing number of algorithms proposed over

the last decade and is one of the motivations of this paper as

well. The next section proposes a new algorithm mimicking the

behaviour of grasshopper swarms. There are a few works in the lit-

erature that have tried to simulate locust swarm [29–33] . The cur-

rent study is an attempt to more comprehensively model grasshop-

per behaviours and propose an optimisation algorithm based on

their social interaction.

Due to their simplicity, gradient-free mechanism, high local op-

tima avoidance, and considering problems as black boxes, nature-

inspired algorithms have been applied widely in science and in-

dustry [34–36] . Therefore, we also investigate the application of

the proposed algorithm in solving real problems. The rest of the

paper is organised as follows:

The Grasshopper Optimisation Algorithm is proposed in

Section 2 . Section 3 presents and discusses the results on the

optimisation test beds and inspects the behaviour of the pro-

posed algorithm. Section 4 contains the application of the pro-

posed method in the field of structural design optimisation. Finally,

Section 5 concludes the work and suggests several directions for

future studies.

2. Grasshopper Optimisation Algorithm (GOA)

Grasshopper are insects. They are considered a pest due to

their damage to crop production and agriculture. The life cycle of

grasshoppers is shown in Fig. 1 . Although grasshoppers are usually

seen individually in nature, they join in one of the largest swarm

of all creatures [37] . The size of the swarm may be of continen-

tal scale and a nightmare for farmers. The unique aspect of the

grasshopper swarm is that the swarming behaviour is found in

both nymph and adulthood [38] . Millions of nymph grasshoppers

jump and move like rolling cylinders. In their path, they eat almost

all vegetation. After this behaviour, when they become adult, they

form a swarm in the air. This is how grasshoppers migrate over

large distances.

The main characteristic of the swarm in the larval phase is slow

movement and small steps of the grasshoppers. In contrast, long-

range and abrupt movement is the essential feature of the swarm

in adulthood. Food source seeking is another important character-

istic of the swarming of grasshoppers. As discussed in the intro-

duction, nature-inspired algorithms logically divide the search pro-

cess into two tendencies: exploration and exploitation. In explo-

ration, the search agents are encouraged to move abruptly, while

they tend to move locally during exploitation. These two functions,

as well as target seeking, are performed by grasshoppers natu-

rally. Therefore, if we find a way to mathematically model this be-

haviour, we can design a new nature-inspired algorithm.

The mathematical model employed to simulate the swarming

behaviour of grasshoppers is presented as follows [39] :

X i = S i + G i + A i (2.1)

where X i defines the position of the i-th grasshopper, S i is the so-

cial interaction, G i is the gravity force on the i-th grasshopper, and

A i shows the wind advection. Note that to provide random be-

haviour the equation can be written as X i = r 1 S i + r 2 G i + r 3 A i where

r 1 , r 2 , and r 3 are random numbers in [0,1].

S i =

N ∑

j=1

j � = i

s
(
d i j

) ̂ d i j (2.2)

where d ij is the distance between the i-th and the j-th grasshopper,

calculated as d ij = | x j −x i |, s is a function to define the strength of

social forces, as shown in Eg. (2.3), and

̂ d i j =

x j −x i
d i j

is a unit vector

from the i th grasshopper to the j th grasshopper.

The s function, which defines the social forces, is calculated as

follows:

s (r) = f e
−r
l − e −r (2.3)

Download English Version:

https://daneshyari.com/en/article/4978033

Download Persian Version:

https://daneshyari.com/article/4978033

Daneshyari.com

https://daneshyari.com/en/article/4978033
https://daneshyari.com/article/4978033
https://daneshyari.com

