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a b s t r a c t

This paper proposes a geospatial analysis framework and software to interpret water-quality sampling
data from towed undulating vehicles in near-real time. The framework includes data quality assurance
and quality control processes, automated kriging interpolation along undulating paths, and local hotspot
and cluster analyses. These methods are implemented in an interactive Web application developed using
the Shiny package in the R programming environment to support near-real time analysis along with 2-
and 3-D visualizations. The approach is demonstrated using historical sampling data from an undulating
vehicle deployed at three rivermouth sites in Lake Michigan during 2011. The normalized root-mean-
square error (NRMSE) of the interpolation averages approximately 10% in 3-fold cross validation. The
results show that the framework can be used to track river plume dynamics and provide insights on
mixing, which could be related to wind and seiche events.

© 2017 Elsevier Ltd. All rights reserved.

Software availability

Product Title: Towed Undulating Vehicle Data Analysis Tool
Developer: Wenzhao Xu
Contact Address: Dept. of Civil and Environmental Engineering,

University of Illinois at Urbana-Champaign
Contact Email: xuwz.uiuc@gmail.com
Available Since: 2016
Programming Language: R
Source Code: http://stormxuwz.github.io/TUVTool/
Cost: Free

1. Introduction

Rivermouth ecosystems are dynamic transitional river and lake
mixing zones that can extend many kilometers upstream of the
river/lake confluence and a similar distance into the lake.

Rivermouth ecosystems are not only economic centers for human
populations (e.g., fish production and recreation) but also have
significant influences on the lake ecosystem (Larson et al., 2013).
River plumes affect nearshore water chemistry (Kaur et al., 2007;
Makarewicz and Howell, 2012), bacteria transportation (Nekouee,
2012), and fish community composition (Janetski et al., 2013).
However, the complexity of the rivermouth system impedes un-
derstanding of the river plume dynamics and their effects, which
are controlled by many factors such as vertical/horizontal mixing,
dispersion, density, and seiche effects (Rao and Schwab, 2007;
Jackson et al., 2008). Seiche events, for example, are wind-
induced water-level fluctuations that bring large volumes of lake
water into rivermouths and can create backflow, which may affect
the location of mixing zones (Pebbles et al., 2013). Moreover,
phytoplankton distributions not only depend on temperature, ba-
thymetry and hydrologic features such as watershed type and
riverine input (Pavlac et al., 2012; Snow et al., 2000), but also are
influenced by wind and the presence of older plumes (Hickey et al.,
2005; Frame and Lessard, 2009). Therefore, it is important to un-
derstand plume dynamics to fully comprehend rivermouth
systems.
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In the Great Lakes, knowledge about rivermouthmixing patterns
and especially plumes has become vital in understanding their role
in maintaining nearshore and deepwater foodwebs (Hoffman et al.,
2010; Larson et al., 2013). The recent (1990-present) invasion and
proliferation of Dreissenid mussels have been implicated in the
collapse of deepwater fish communities in Lakes Michigan and
Huron (Riley et al., 2008; Madenjian et al., 2012). Mussels are
thought to be sequestering energy and nutrients in nearshore areas
that formerly supported fish in offshore and deepwater habitats
(Hecky et al., 2004). Rivermouth ecosystems and their associated
plumes may be one of the few areas where historical food webs are
still intact, but food web assessments in such habitats have been
limited due to the dynamic nature of plumes.

Understanding rivermouth dynamics requires comprehensive
water quality data (Howell et al., 2012). Traditionally, rivermouth
data are collected via fixed stations or buoys that continuously or
periodically measure water chemistry. For example, the National
Oceanographic and Atmospheric Administration (NOAA) have sig-
nificant amounts of buoy data sampled at the coastline (https://
coastwatch.glerl.noaa.gov). However, this approach provides data
that are limited spatially by the existing buoy network of NOAA.
Another approach is using a mobile sampling platformwith a flow-
through system that continuously pumps water from a fixed depth
through a series of sensors to obtain water chemistry data (Pavlac
et al., 2012; Twiss and Marshall, 2012; Jackson and Reneau, 2014).
This extends the spatial range of data collection but fails to sample
data throughout the water column. A promising approach to
sample data at extensive three-dimensional (3-D) spatial scales is
to use towed or autonomous undulating vehicles that carry mul-
tiple sensors. Such a vehicle may be autonomous or towed behind a
ship that moves along different survey paths, undulating
throughout the survey between the water surface and the near bed
region of the water column. Such vehicles currently in operation
include ScanFish (Ludsin et al., 2009), SARAGO (Marcelli et al.,
2005), TRIAXUS (Jones et al., 2011) and V-Fin (Yurista et al.,
2012), EcoMapper AUV (Jackson and Reneau, 2014) and various
Gliders such as ROUGHIE (Page et al., 2017).

Monitoring with towed undulating vehicles requires expensive
ship time so vehicles need to be deployed efficiently. Ships usually
move along pre-defined transects or grid patterns and the towed
vehicles collect data along each transect while undulating to sam-
ple at multiple depths. However, grids that are too small may fail to
capture the river plume, while those large enough to capture the
river plume fully also may expend excess time and effort to capture
data outside of the plume that are not needed. In addition,
analyzing data from gridded sampling assumes stationarity of the
river plume, and the river plume state may changemarkedly during
the time spent sampling a large grid, thus introducing temporal
change into the spatial variability of the data. The adaptive sam-
pling strategy, which involves adjusting collection strategies based
on previously collected data to minimize effort while maximizing
river plume coverage is one possible solution to this problem.
However, adaptive sampling raises a second serious problem: the
large amount of high-frequency data that are collected by towed
undulating vehicles are difficult to analyze quickly enough to adjust
sampling. This is especially true for tow-yo sampling, where kriging
interpolation is used to provide direct visualization of sampling
results. Existing commercial software (such as Surfer, Golden
Software) requires researchers to manually fit a variogram (Ludsin
et al., 2009; Yurista et al., 2009), which is time-consuming and such
data are usually analyzed after collection, making adaptive sam-
pling impossible. New and efficient methods are needed to analyze
data onboard the vessel as it is being collected.

In this study, we propose an automated kriging method that
interpolates raw data onto grid maps that allow users to visualize

patterns and adjust sampling in near-real time. To highlight the
spatial distribution of variables in a distinct and informative way,
we use hotspot analysis with local G statistics (Ord and Getis, 1995).
We then further cluster the water chemistry data to explore the
mixing structure of the river and lake water. The analysis frame-
work has been implemented in an interactive Web application
developed with the Shiny package in the R programming devel-
opment environment. This will allow researchers on research
vessels to easily perform analysis in near-real time.

2. Study area and data description

We illustrate the utility of the methods developed in this work
for illuminating details of the river plume dynamics using data
collected by the TRIAXUS undulating vehicle at the Manitowoc,
Muskegon and Pere Marquette rivermouth areas in Lake Michigan
during the summer of 2011. TRIAXUS, developed by MacArtney
Underwater Technology, was towed behind the research vessel,
Lake Guardian (operated by the EPA-Great Lakes National Programs
Office), along pre-defined transects parallel or perpendicular to the
shoreline. Fig. 1 shows the transects located in nearshore areas
outside of the Manitowoc River, Muskegon River, and Pere Mar-
quette River in Lake Michigan that were sampled during summer
2011. At these three sites, the TRIAXUS vehicle was deployed in
undulating trajectories to measure water chemistry at different
depths as the ship moved along each transect. The sampling depth
of all paths ranged from 3 to 34 m. Average wavelengths of the
undulating cycles (i.e., the distance between two peak points or
two valley points) ranged from 0.126 km to 0.6 km.

The TRIAXUS carried multiple sensors that measured specific
conductance, temperature, turbidity (measured as beam attenua-
tion coefficients (BAT)), dissolved oxygen (DO), indices of chloro-
phyll concentration and algal accessory pigments, and zooplankton
biomass and density. Chlorophyll concentrations weremeasured by
a Fluoroprobe sensor, which uses excitation light with varying
wavelengths to distinguish algae fluorescence among different
algal groups. The validation and potential cautions of using Fluo-
roprobe to estimate phytoplankton community are given by
Catherine et al. (2012). Zooplankton biomass and density were
derived from a laser optical plankton counter (LOPC), which counts
the number of particles in different size bins (from 105 mm to
1920 mm with step size 15 mm). The methods for comparing LOPC
output to zooplankton biomass and density derived from tradi-
tional sampling methods are described in Watkins et al. (2017).
Other variables were measured by a SeaBird CTD (conductivity,
temperature, and depth) sensor attached to the vehicle. As a result,
multi-dimensional spatial data with longitude, latitude, and depth
as coordinates were generated.

3. Methodology

3.1. General description

Fig. 2 shows the data analysis framework proposed and applied
in this work. First, a data quality assurance/quality control (QA/QC)
step removes outliers and anomalies in the data. Next, we use
automated kriging interpolation to visualize water chemistry
properties on grid maps from the sampling data. Based on the in-
terpolations, two spatial statistical methods, local G statistics and k-
means clustering algorithm, are implemented to identify patterns
in the data. The proposed methods aim to extract the information
from the raw data paths and require minimal human interaction.
Such automated processes can extract information during the
sampling activities, rather than as post-sampling analysis, enabling
near-real-time adaptive observation.
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