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a b s t r a c t

Water resources planning and design problems, such as the sequencing of water supply infrastructure,
are often complicated by deep uncertainty, including changes in population dynamics and the impact of
climate change. To handle such uncertainties, robustness can be used to assess system performance, but
its calculation typically involves many scenarios and hence is computationally expensive. Consequently,
robustness has usually not been included as a formal optimization objective, but is considered post-
optimization. To address this shortcoming, an approach is developed that uses metamodels (surro-
gates of computationally expensive simulation models) to calculate robustness and other objectives. This
enables robustness to be considered explicitly as an objective within a multi-objective optimization
framework. The approach is demonstrated for a water-supply sources sequencing problem in Adelaide,
South Australia. The results indicate the approach can identify optimal trade-offs between robustness,
cost and environmental objectives, which would otherwise not have been possible using commonly
available computational resources.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The sequencing of water resources infrastructure is commonly
undertaken for a wide range of purposes, such as the augmentation
of urbanwater supply sources (Beh et al., 2014), and the planning of
urban water supply mains and other water supply infrastructure
(Kang and Lansey, 2014; Creaco et al., 2014, 2015). This process is
often carried out with the aid of optimization techniques, aiming to
identify optimal sequences in order to make best use of available
resources (Beh et al., 2015a). These optimal sequences have tradi-
tionally been obtained using deterministic optimization techniques
such as linear programming (e.g. Ray et al., 2012; Beh et al., 2014),
but in recent years, there has been a move towards the use of
evolutionary algorithms (EAs) to identify optimal sequencing so-
lutions (e.g. Kang and Lansey, 2014; Beh et al., 2015b). This is
because EAs (i) are more effective in exploring the large and rugged
search spaces associated with water resources problems when

compared with deterministic optimization techniques (Nicklow
et al., 2010); (ii) can be flexibly linked with simulation models of
water resource systems (Maier et al., 2014), and (iii) can account for
discrete or continuous decision variables, as well as multiple
competing objectives (Kollat and Reed, 2007; Maier et al., 2015).

Given that the design life of water infrastructure is generally in
the order of 30e100 years, long-term future conditions have to be
taken into consideration when developing optimal sequence plans.
Within a modelling context, the impact of future conditions on
water infrastructure can be considered using three complementary
paradigms (Maier et al., 2016). The first uses best available
knowledge to identify a single set of “best guess” future conditions
that would affect system performance (e.g. rainfall, Fu and Butler,
2014). The second paradigm considers future conditions as quan-
tifiably uncertain, accounting for uncertainties through stochastic
processes and statistical analysis of uncertain variables (e.g.
Kapelan et al., 2005; Basupi and Kapelan, 2015). The third paradigm
considers multiple plausible futures, generally arising from recog-
nized ignorance or an unknown future, where it is no longer
possible to place probabilities on particular future conditions, or
even to rank them (e.g. Kwakkel, 2010). Consequently, the first
paradigm does not consider future uncertainty explicitly, the sec-
ond paradigm considers “local” uncertainty in the sense of
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considering the envelope of uncertainty surrounding a “best guess”
future, and the third paradigm considers “global” or “deep” un-
certainty in the sense of considering multiple plausible future tra-
jectories that do not have an associated probability and cannot be
ranked, which are generally represented via scenarios (Maier et al.,
2016).

As many future changes that affect the satisfactory performance
of water resource systems, such as changes in climate and popu-
lation, are deeply uncertain, the consideration of deep uncertainty
has received significant attention in the water resources optimi-
zation literature in recent years. The vast majority of these studies
have only considered which options should be implemented,
without consideration of their timing (Li et al., 2006; Jeuland and
Whittington, 2014; Ray et al., 2014), although some studies have
taken the optimal sequencing of options into account (Beh et al.,
2015a).

When deep uncertainty is considered in water resources plan-
ning, the aim is to identify solutions for which systems perform
satisfactorily in the face of changes in unknown future conditions.
Such solutions are termed robust, as their ability to perform satis-
factorily is insensitive to changes in uncertain future conditions. As
discussed in Maier et al. (2016), robust solutions can be identified
using two philosophically different approaches, including the use
of a static approach, as part of which a single, fixed strategy is
developed that can withstand a wide range of future conditions,
and the use of an adaptive approach, as part of which multiple,
flexible strategies are developed. Both approaches have been used
extensively in water resources studies (Roach et al., 2016; Basupi
and Kapelan, 2015) and have their strengths and weaknesses,
although they can also be considered as complementary (Kwakkel
et al., 2016a,b) and hybrid approaches that make use of elements of
both have been developed (e.g. Beh et al., 2015b).

Given that water resource systems are considered to perform
satisfactorily if supply is greater than or equal to demand, robust
solutions are those that satisfy the above constraint under a range
of plausible future conditions (i.e. under global/deep uncertainty).
It should be noted that as a result of natural variability and other
types of local uncertainty, the ability to satisfy demand is generally
represented using a combination of probabilistic performance
metrics, such as reliability, vulnerability and resilience (Hashimoto
et al., 1982; Xu et al., 1998; Matrosov et al., 2013a, b; Beh et al.,
2015a,b). Consequently, for water resource systems, robust solu-
tions are those for which the system of interest can perform at
satisfactory levels of a combination of reliability, vulnerability etc.
under a range of plausible future conditions. It should also be noted
that in cases where no minimum system performance levels exist,
metrics such as reliability could be included as objectives, rather
than constraints (e.g. Wu et al., 2013a), in which case the calcula-
tion of robustness would not be required, although this is generally
not the case.

Although there are various definitions of robustness (see
Hamarat et al., 2014; Herman et al., 2015) and different definitions
can result in different outcomes (Giuliani and Castelletti, 2016;
Kwakkel et al., 2016b), when developing robust long term water
resources plans, robustness metrics based on satisficing criteria are
most appropriate, as they align with the way the performance of
water resources systems is generally assessed, as discussed above
(i.e. whether a system performs adequately or not, such as ensuring
constraints that supply is greater than demand). Of the different
types of satisficing criteria (see Herman et al., 2015), ones that are
based on the proportion of plausible future conditions under which
the system performs adequately are preferable to those based on
the deviation from an expected future state, as it is difficult to
identify the latter under deep uncertainty (Maier et al., 2016).
Consequently, the domain criterion (Schneller and Sphicas, 1983),

which has already been used in a number of water resources
planning studies (Paton et al., 2014a, b; Beh et al., 2015b), appears
to be a suitable metric for assessing the performance of water re-
sources systems under deep uncertainty.

In previous water resources planning optimization studies that
considered robustness as a measure of system performance under
deep uncertainty, regardless of whether sequencing was consid-
ered or not, robustness was not included as an objective in the
optimization problem, but was considered post-optimization (Beh
et al., 2015b; Kasprzyk et al., 2013; Paton et al., 2014a). As a
result, it is unlikely that the most robust solutions were identified,
as robustness was calculated for solutions that were optimized for
other objectives, such as cost and greenhouse gas (GHG) emissions.
It should be noted that while robustness has already been used as
an objective in a small number of water resources optimization
studies (Kapelan et al., 2005; Basupi and Kapelan, 2015; Zeff et al.,
2016), these studies did not account for deep uncertainty, but only
local uncertainty, therefore addressing a different problem from the
work presented in this paper.

The most likely reason for the exclusion of robustness as an
objective in water resources optimization studies considering deep
uncertainty is that the calculation of robustness is often computa-
tionally expensive, as it requires satisfactory system performance to
be calculated for a range of future conditions (Roach et al., 2016).
This often makes the inclusion of robustness as an objective in
optimization studies computationally intractable, particularly since
the run-times of the simulation models needed to calculate satis-
factory system performance are generally not insignificant. These
computational issues are further exacerbated in water resources
infrastructure sequencing problems, as the computationally
expensive simulation model has to be run a large number of times
to account for the natural variability in climatic variables affecting
supply and demand (Mortazavi et al., 2012) for each of the plausible
futures considered and for each stage of the planning process. In
addition, if evolutionary algorithms (EAs) (Maier et al., 2014) are
used as the optimization engine, as is often the case (e.g. Beh et al.,
2015b; Kasprzyk et al., 2013; Paton et al., 2014a), the above model
runs have to be repeated at each iteration of the optimization
process, and the entire optimization process has to be repeated
several times from different starting positions in solution space
to account for the stochastic searching behaviour of EAs. While
post-optimization consideration of robustness has successfully
addressed these computational issues, it does not necessarily
identify the most robust solutions, as robustness is not maximized
explicitly during the optimization process (Beh et al., 2015b), as
mentioned above.

In order to overcome the shortcomings outlined above, an
approach is developed in the present study that uses metamodels
(also called surrogate or emulation models) (Castelletti et al., 2012;
Razavi et al., 2012), instead of computationally expensive simula-
tionmodels, to calculate all objectives, including robustness, as part
of a multi-objective evolutionary algorithm (MOEA) optimization
framework. In other words, the objective is to develop models that
emulate the function of the hi-fidelity simulation model of the
water resource system of interest, but that are much more
computationally efficient and can therefore be used in place of the
simulation model during the optimization process in order to make
the process computationally feasible.

While metamodels have already been used widely in water re-
sources optimization frameworks in order to increase the compu-
tational efficiency of optimization processes (Razavi et al., 2012),
their application in the context of uncertainty calculation has been
limited, even though they offer significant potential for doing so
(Maier et al., 2014; Mount et al., 2016). To our best knowledge, only
Yan and Minsker (2011) and Broad et al. (2015) have developed
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