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a b s t r a c t

In the past decades, simulation frameworks have greatly increased in complexity, due to coupling of
models from various disciplines into so-called integrated models. Recently, the combination with tools
for uncertainty quantification, inverse modelling, optimization and control started a development to-
wards what we call extended simulation frameworks. While there is an ongoing discussion on quality
assurance and reproducibility for simulation frameworks, we have not observed a similar discussion for
the extended case. Particularly for extended frameworks, the need for quality assurance is high: The
overwhelming range of options and algorithms is unmanageable by a domain expert and opaque to
decision makers or the public. The resulting demand for ‘intelligent software’ with automated config-
uration can lead to a blind trust in simulation results even if they are incorrect. This is a threatening
scenario due to potential consequences in simulation-based engineering or political decisions. In this
paper, we analyze the increasing complexity of scientific computing workflows, and discuss the corre-
sponding problems of extended scientific simulation frameworks. We propose a paradigm that regulates
the allowable properties of framework components, supports the framework configuration for complex
simulations, enforces automatic self-tests of configured frameworks, and communicates automated al-
gorithm choices, potentially critical user settings or convergence issues with adaptive detail level and
urgency to the end-user. Our goal is to start transferring the quality assurance discussion in the field of
integrated modeling and conventional software frameworks to the area of extended simulation frame-
works. With this, we hope to increase the reliability and transparency of (extended) frameworks,
framework use and of the corresponding simulation results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling of natural and technical processes or behavior has
become an important part of both research and industry. Simula-
tions have become a large part of everyone's lives, as already
envisioned by Gallopoulos et al. (1994):

“Some of the capabilities of future problem-solving environ-
ments seem like science fiction, but whatever form they even-
tually take, their scientific and economic impact will be
enormous.”

Simulations are used more and more as prognostic tools. They
help designing new cities or traffic guidance systems, forecast the
weather and support decisions for nuclear waste storage in deep
geological formations. Thus, simulations can have a large influence
in large-scale engineering projects or even in policy making.

Even science and engineering are experiencing a paradigm shift
towards simulation-based approaches, as discussed by Oden et al.
(2006); Glotzer et al. (2009); Gallopoulos et al. (1994), see also
Section 2. For example, simulations in industry are used to improve
experimentation and rapid prototyping in crash simulations (Mei
and Thole, 2008; Flidrova et al., 2010; Ryckelynck et al., 2011).
Sometimes, simulations in research are even believed to help in
discovering new physical laws and natural phenomena (due to the
complex interaction of already known laws), see King et al. (2009).

Often, the tools used for those simulations are so-called simu-
lation frameworks, i.e. compiled suites of software designed to solve
a huge class of problems. Such frameworks often claim true-to-life

* The authors would like to thank the German Research Foundation (DFG) for
financial support of the project within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.
* Corresponding author.

E-mail addresses: daniel.wirtz@simtech.uni-stuttgart.de (D. Wirtz), wolfgang.
nowak@iws.uni-stuttgart.de (W. Nowak).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

http://dx.doi.org/10.1016/j.envsoft.2016.10.003
1364-8152/© 2017 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 93 (2017) 180e192

Delta:1_given name
Delta:1_surname
mailto:daniel.wirtz@simtech.uni-stuttgart.de
mailto:wolfgang.nowak@iws.uni-stuttgart.de
mailto:wolfgang.nowak@iws.uni-stuttgart.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2016.10.003&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2016.10.003
http://dx.doi.org/10.1016/j.envsoft.2016.10.003
http://dx.doi.org/10.1016/j.envsoft.2016.10.003


simulation for complexmulti-physics and/ormulti-scale systems in
a large variety of scientific fields at a highly automated level. As the
conceptual models grow more and more complex, so do the
simulation frameworks: COMSOL (COMSOL, 2012), DUNE
(Ohlberger et al., 2012), DuMux (Flemisch et al., 2011), espresso
(Holm et al., 2012), FEniCS (The FEniCS project, 2012), HydroGeo-
Sphere (Brunner and Simmons, 2012), FEFLOW (Trefry and Muffels,
2007), OpenGeoSys (Kolditz et al., 2012a), ParFlow (Kollet and
Maxwell, 2008), to name just a few. Examples of individual
modeling tools combined into coupled simulation frameworks can
be found in the area of integrated (environmental) modeling (e.g.,
Laniak et al., 2013; Bierkens et al., 2014).

However, the typical present-day simulation-based scientific
workflowisgenerallymorecomplex thanmerely runninga series
of simulation codes. There are important additional components
like uncertainty quantification, inverse modelling, optimization and
control. The corresponding algorithms are beginning to be (or will
sooner or later be) included in frameworks. Until now, tools for these
additional workflow tasks are usually available as separate tool-
boxes. Examples are the sensitivity analysis, parameter estimation
and uncertainty quantification toolboxes PEST, UCODE and DAKOTA
(Doherty and Hunt, 2010; Hill et al., 2005; Eldred et al., 2007), the
decision support frameworkMADS (Vesselinov et al., 2012), the data
impact analysis toolPreDIA (Leubeet al., 2012a) and theoptimization
toolbox OSTRICH (Matott, 2003). In a more general sense, the opti-
mization and control toolboxes in programming environments such
as MATLAB or SIMULINK (The MathWorks, 2014a, b) are readily
available and cover most of these aspects.

Fusing these additional components with simulation frame-
works leads to what we call extended simulation frameworks. In
fact, one can already observe the first developments in that direc-
tion, for example the iTOUGH2 version of the TOUGH2 simulator
for non-isothermal multiphase flow in fractured porous media
(Finsterle, 2004), the combination of LS-Dyna with LS-Opt
(Dynamore, 2014), the Python Multivariate Land Data Assimila-
tion Framework DasPy (Han et al., 2015) or the extension of Mod-
elWeb to “UncertWeb”, where uncertainty information is
communicated between chained components (Bastin et al., 2013).
These examples demonstrate the increasing awareness of individ-
ual research communities of the need for overarching frameworks
that cover more complex workflows around the basic (forward-)
simulation task. In our study, we focus on extended simulation
frameworks. These highly integrated frameworks, however, need to
be distinguished from lean, made-for-purpose simulation and
research tools, which are sometimes preferred depending on the
user's environment and philosophy.

The above developments mark a growth in complexity of
models, simulation-based workflows and corresponding software
frameworks. Along with this increasing complexity, the probability
of misconfiguration, failed convergence and other errors grows in
particular for extended frameworks. If simulations are performed
inaccurately or are applied wrongly in any simulation-assisted
engineering, research or experimental setting, the following con-
sequences are imminent:

1. Liability questions will arise when systems, political decisions or
structures developed with the aid of simulations fail and lead to
severe damage in material or even human life.

2. Conversely, economical, ecological and financial consequences
can be faced if simulation results suggest over-conservative
decisions with too many preventive measures.

3. In the context of translational science (Council, 2012) or post-
normal science (e.g., Funtowicz and Ravetz, 1994), there is
rapid and evolving feedback between science, engineering, de-
cision making, policy making and long-range societal decisions.

Clearly, political decisions based on false simulations would
imply a loss of credibility. The social impact of simulations (and
their uncertainties and errors) is a delicate topic which has just
begun to be investigated, e.g. (Brugnach et al., 2007).

Clearly, to avoid these consequences, it is essential to ensure the
right choice of models and quality of simulation results. This can be
supported by providing standards for quality, transparency and
reproducibility of simulation frameworks (Peng, 2011;
Atmanspacher et al., 2014) as well as complete documentation of
input data, simulation tools, simulations settings and logs, simu-
lation results, and the workflows that produced and used them.

Additionally, a high coding standard needs to be ensured (Morris,
2008; Faulket al., 2009;Kelly, 2007). Rigorous applicationof software
engineering techniques (e.g., Freeman et al., 2004), quality man-
agement, quality-of-service concepts (Gil et al., 2007), code valida-
tion and code verification (Post and Votta, 2005a, b) and other
paradigms stemming from computer science (e.g., Nejmeh, 1988;
Knupp and Salari, 2003; Wilson, 2006; Panas et al., 2007; Campbell
and Papapetrou, 2013) can help to alleviate those problems. At
least, they can ensure the algorithmic correctness of the simulation
results and support the transparency of the used algorithms and
settings to the user. The above quality assurance mechanisms have
been used, to a varying extent, for conventional frameworks andwill
have to be applied to extended frameworks even more rigorously.

Still, algorithmic correctness is insufficient to guarantee accu-
rate results, because the frameworkmay have been configuredwith
inadequate algorithmic choices or parameter settings. In extended
frameworks, the number of such choices grows combinatorially
with the available components and algorithms. In this situation, the
folkloric “no free lunch theorem” (Wolpert, 1996; Wolpert and
Macready, 1997) applies: there will be no pre-configuration or
fixed combination of algorithms that will work best over the large
range of all possible combined modelling/simulation/optimization
tasks. As there is no unique pre-configuration, the choice of algo-
rithms to combine will necessarily have to be done by the user and/
or in an intelligent automated fashion.

Clearly, this increased complexity can hardly be overseen by a
single domain expert, who has to count on each component's
reliability and on well-made algorithm choices. It is already being
recognized that this leads to an unjustifiable blind trust in the
software by users, although each of the possible algorithmic com-
binations named above contains multiple sources of error.

Thus, we strongly suggest that extended simulation frameworks
must support the user at all phases of the simulation workflow.
Also, they must prevent failure of the simulations due to mathe-
matical, numerical, algorithmic or software technical reasons
including automation of important adjustments or possibly
dangerous user settings. Possible measures include proper docu-
mentation exceeding the scope of “class based” JavaDoc-style
(Kramer, 1999) documentation, automatic self-configuration and
active configuration support, forced self-tests for the resulting
configuration, and automated communication between framework
and user about these processes at adaptive complexity levels
through adequate user interfaces. The user should also be informed
about the consequences of settings and possible trade-offs, such as
the balance between expected simulation time and overall simu-
lation quality (Leube et al., 2013).

The paper is organized as follows: In Section 2, we review the
most critical steps within the workflow of simulation-based engi-
neering and science that are relevant to our discussion. In Section 3,
we present three examples of complex extended simulation
workflows taken from (environmental) engineering applications.
Based on these examples, we highlight the evolving complexity of
scientific workflows that focus not only on simulation, but also on
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