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a b s t r a c t

The local structural identifiability problem is investigated for the general case and demonstrated for a
well-known microbial degradation model that includes 13 unknown parameters and 3 additional states.
We address the identifiability question using a novel algorithm that can be used for large models with
many parameters to be identified. A key ingredient in the analysis is the application of a singular value
decomposition of the normalized parametric output sensitivity matrix that is obtained through a simple
model integration. The SVD results are further analysed and verified in a complementary symbolic
computation. It is especially the swiftness and accuracy of the suggested method that we consider to be a
substantial advantage in comparison to existing methods for a structural identifiability analysis. The
method also opens, in a natural way, the analysis of (parametric) uncertainty in general, and this is
demonstrated in more detail in the results section.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In environmental modelling local structural identifiability is an
essential model property that should be investigated as part of a
calibration of the model against field data. Structural identifiability
may even be investigated before the data have been collected. Beck
already writes in his 1987 review on the analysis of uncertainty in
water quality models that ‘For water quality models the overriding
difficulty of parameter estimation is that of a lack of parameter
identifiability’, Beck (1987). As for the definition of this funda-
mental problem a distinction can be made between structural or
theoretical identifiability (assuming perfect data) and practical
identifiability (assuming noise corrupted data). In the former
problem, structural identifiability amounts to the question: Is it
possible to have exact equivalence of two output signals, say yðt; q1Þ
and yðt; q2Þ, that have been generated using two different sets of
parameter values q1 and q2? Or, put differently, does equivalence of
the two output signals yðt; q1Þ ¼ yðt; q2Þ imply equivalence of the
parameter values that generated these two curves, i.e. q1 ¼ q2? For
practical identifiability the main question in general is how many
parameters can be uniquely identified on the basis of real mea-
surement/output signals that are inevitably corrupted with noise.

Clearly, theoretical identifiability is a prerequisite for practical
identifiability. We refer to Cobelli and DiStefano III (1980); Norton
(1980); Walter (1982); Godfrey (1986) for a more detailed discus-
sion on structural identifiability. We also note that structural
identifiability can be assessed both locally and globally. If a model is
not globally identifiable, distinct sets of parameter values yield
exactly the same output. For example, if the parameter value q1 ¼ 1
must be determined from sensor readings, while in the model

equations q21 is the only expression that includes this parameter,
then clearly q1 ¼ �1 yields the same output signal as q1 ¼ 1.
Therefore q1 is not globally identifiable in this case, while locally
it is.

In a more recent contribution various aspects of identifiability
for environmental models are reviewed in Marsili-Libelli et al.
(2014). A more technical paper that summarizes the various
methods to assess structural identifiability is Miao et al. (2011), in
which a good and complete overview is presented. Here, we
consider local structural identifiability for the general and well-
known non-linear state-space model that reads

dxðtÞ
dt

¼ f ðxðtÞ;uðtÞ; qÞ (1)

yðtÞ ¼ hðxðtÞ;uðtÞ; qÞ (2)

where xðtÞ is a vector of states (dimðxÞ ¼ n), uðtÞ is a vector of inputs
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(dimðuÞ ¼ r), q is the vector of parameters (dimðqÞ ¼ p), and yðtÞ is
the vector of model outputs (or the observation signals,
dimðyÞ ¼ m). Although the method presented in this paper can be
extended to more general model types, we focus our discussion on
non-linear state space models. An important assumption that is
necessary for the symbolic part of our identifiability algorithm to
work, is that the vector valued functions f and h are smooth,
meaning that their derivatives with respect to the states xðtÞ and
parameters q exist. This excludes, in principle, the situationwhere a
switch in the model definition is included that limits the model to a
certain domain such as, for example, in the Blackman growth
model that describes the growth rate of amicrobial population (and
which may be part of the non-linear model definition):

rðx; q1Þ ¼
�
q1 x; q1 x � q2
q2; q1 x> q2

This type of discontinuity, however, can easily be remedied
using a smooth switching function that allows the derivatives of the
output yðtÞ ¼ hðxðtÞ;uðtÞ; qÞ to be calculated symbolically at any
time instant twith the help of an algebraic software package. In the
results section of this paper we will present another example of a
discontinuity in the model structure f due to a time-lag in the
modelled process that causes non-smoothness. This will, again, be
solved with the aid of a smooth switching function that guarantees
the derivatives to exist at any time instant t. Alternatively, one may
study identifiability for both cases of the ‘if-then’ statement in the
model structure. For the Blackman model this means we study
identifiability in two separate regions in the state-space, one for
q1 x � q2, and one for q1 x> q2. The outcome of the identifiability
analysis may then be different for the two cases but, of course, the
two separate analyses yield complementary results that are
certainly of interest before the actual parameter estimation is
performed.

Brun et al. (2001), in their paper on practical identifiability of
large environmental models, present a framework that allows one
to answer, in principle, the practical identifiability question for the
general model (1)e(2). It is not their intention to assess theoretical
identifiability in their examples. Rather, the focus in their work is
on finding identifiable sets of parameters that can be reliably
estimated given an experimental layout and corresponding data
set. This question is resolved on the basis of an analysis of the
parametric output sensitivities. Here, we study both theoretical and
practical identifiability for the general non-linear model structure
(1)e(2), with most emphasis on the theoretical identifiability
question. Our approach is based on an analysis of the (dynamic)
parametric output sensitivities that describe the change of the
outputs yðtÞ caused by perturbations in the parameters q. The
sensitivity dynamics can be easily derived from model (1)e(2) as:

d
dt

vxðt; qÞ
vq

¼ vf
vx

vx
vq

þ vf
vq

(3)

vyðt; qÞ
vq

¼ vh
vx

vx
vq

þ vh
vq

(4)

Note that vxðt;qÞ
vq

is a ðn� pÞ matrix, whose columns contain the
sensitivity of each state-vector element xiðtÞ; i ¼ 1;…;n, to one
specific parameter qj, j ¼ 1;…; p in the parameter vector q. To

guarantee accuracy of our results, all Jacobi matrices vf
vx,

vf
vq
, vhvx, and

vh
vq

are calculated symbolically. Once the combined equations (1)e(4)
have been solved numerically for a specific (also referred to as

nominal) vector q, and the solution is known on a time grid
½t0;…; tN �, we build the (dimensionless) normalized sensitivity

matrix Snðt0;…; tN; qÞ:

Sn
�
t0;…; tN ; q

�
¼

0
BBBBBBBBBBBBBBBBBBBBBBB@
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…
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vy1ðt0Þ
vqp
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…

qp
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vqp
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q1
ymðtNÞ

vymðtNÞ
vq1

…

qp
ymðtNÞ
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vqp

1
CCCCCCCCCCCCCCCCCCCCCCCA

(5)

where we have assumed that the output signals fyjðtÞ; j ¼ 1;…;mg
are not equal to zero for any time t .1 The relative sensitivity matrix
can easily be evaluated numerically for many random vectors

fqi; i ¼ 1;2;…g. To test for local structural identifiability of the

model, we evaluate the rank of Snðt0;…; tN; qÞ using a singular value

decomposition. We assume that the random vector q at which the
sensitivities are evaluated is regular2, meaning that the rank of

Snðt0;…; tN; qÞ does not change within a small neighbourhood of

the nominal parameter vector q. The reason for imposing regularity

of the parameter vector q is that, for example, in the simple model

dxðtÞ
dt

¼ �q1 xðtÞ (6)

xðt0Þ ¼ q0 (7)

yðtÞ ¼ xðtÞ (8)

the parameter q1 clearly can not be identified if we set q0 ¼ 0, while
q0 can be estimated by simple observing the state at t ¼ 0. Clearly, a
small perturbation on q0 ¼ 0 changes the outcome of a structural
identifiability analysis, i.e. q0 ¼ 0 is a non-regular point, and we
prefer to focus the discussion on regular points since these are the
most likely ones to be encountered.

Furthermore, when building the matrix Snðt0;…; tN ; qÞ, the time
grid ½t0;…; tN� onwhich the local sensitivities are solved is carefully
chosen, since it will influence the accuracy of our rank test. Accu-
racy of the SVD algorithm in general is discussed in the book by
Golub and van Loan (1996), section 5.5.8. For the matrix

Snðt0;…; tN; qÞ, this analysis implies that for an accurate outcome of
the SVD algorithm, the time grid is chosen in such a way that the

number of rows in the matrix Snðt0;…; tN; qÞ is as small as possible,
but not smaller than the number of parameters p. Hence, we choose
m ðN þ 1Þ> p with N as small as possible.

The key message we want to convey in this paper is that to

1 To remedy possible “zeroness” of the outputs, we can scale the output with an
average yjðtÞ to obtain non-zero denominators in the matrix entries in equation (5).
Even in case the output yðtÞ is very small, a scaling factor can be applied to remedy
large values of the relative sensitivities.

2 We refer to Kwatny and Blankenship (2000) for a more elaborate treatment of
regularity of the point q. In that reference this property is important when estab-
lishing controllability and/or observability properties of a non-linear control-sys-
tem on the basis of a rank test.
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