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a b s t r a c t

Model coupling is an important approach to studying the dynamics of complex systems, but by intro-
ducing new feedback loops, the dynamics of coupled models can be artificially distorted. This paper
describes a new method of model coupling which addresses this problem through a dynamic form of
regularization. The method allows the time series evolution of model variables to be mutually informed
by multiple models, and models to influence each other in proportion to their degree of certainty.
Uncoupled forms of the coupled models can act as dynamic priors on the trajectory of coupled variables,
strengthening model stability and offering additional calibration of the coupling process. Finally, models
that describe different spatial scales can be coupled into multi-scale models, so that, for example,
spatially-distributed models can be coupled with aggregate models, and influence one another. We apply
this technique to a coupled socio-ecological system of population growth and ecosystem harvesting.

© 2017 Elsevier Ltd. All rights reserved.

Software availability

The model coupling system described below is implemented in
the OpenWorld modeling framework, available at https://github.
com/jrising/openworld/.

1. Introduction

A growing number of integrated models are being developed by
combining existing models as components (Schlueter et al., 2012;
Strasser et al., 2014). Combining existing models supports the
development of more comprehensive models while building on the
confidence placed in simpler models. Often, model components are
linked together in a serial fashion, such as when a climate model is
used to drive a economic or ecosystem model to study climate
impacts. However, in many cases there are feedbacks between the
model components, where the output of one model is an input to
the models which determine its own input. For example, the im-
pacts of climate on human and natural systems can result in
changes in the release of CO2 into the atmosphere. In this case, the
component models are coupled (Brandmeyer and Karimi, 2000).

We define coupling as the introduction of feedback loops be-
tween two ormoremodels, where some of the variables taken to be
exogenously determined by each model are computed at each
time-step by other models. Coupled models are used to study
climate (Eyring et al., 2015), ecosystems (Lehodey, 2005; Fulton,
2010), earth systems (Sokolov et al., 2005; Warner et al., 2008),

climate mitigation (Anthoff and Tol, 2010), the water-energy-food
nexus (Hermann et al., 2011), and many other realms (Larson
et al., 2005; Malleron et al., 2011). Coupled natural and human
dynamics are of particular interest in understanding ecological and
economic sustainability (Liu et al., 2007).

Coupling models can introduce dynamics which are not present
in either model individually. While this is exactly the goal of model
coupling, the impacts of this feedback can be distortive. In the
worst case, the coupled system can have resonant frequencies
which produce instability and run-away feedback, a problemwhich
is sometimes resolved by increasing the strength of negative
feedback drivers to unrealistic levels.

Even when runaway feedback does not occur, feedback can
result in amplifications to the dynamics of the system. In some
cases, this feedback is a accurate reflection of the true dynamics of
the system (e.g., Roe and Baker, 2007). However, if the uncoupled
original models were calibrated to reproduce observations, they
typically require recalibration in their coupled form. This recali-
bration can be time consuming, disruptive to the scientific pro-
cesses that underlay the uncoupled models, and can produce
parameter estimates that are not realistic from the standpoint of
the theories behind the individual uncoupled models. Often, a
larger set of feedbacks could be formed between conceptual model
components than is technically feasible, because of how the vari-
ables are defined or exposed to model developers. In all of these
cases, it is desirable for the coupled model to take on some new
behaviors but not to drift far from the behavior of the component
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models in their uncoupled form.
While the disruptive effects of feedback are well-known,

modelling frameworks have traditionally focused on the me-
chanics of connecting the models and moving data between them
(Larson et al., 2005; Fritzinger et al., 2012), rather than the distor-
tions that can arise from this process. This paper presents a new
technique for managing those distortions. Ultimately, the goal of
this technique is to allow any collection of models to be safely
coupled without recalibration and with the flexibility for models to
be added and removed with minimal effort.

The paper is organized as follows. Section 1 formalizes the
feedback problem. Section 2 presents the basic solution developed
in this paper. Section 3 then extends this technique to a cross-scale
context. The key parameter introduced by this technique to the
modelling process is the strength of dynamic priors, which section
4 describes how to balance the effects of feedback and regulariza-
tion. Finally, section 5 develops an example application of a socio-
ecological system, and shows how its feedback distortions can be
resolved and the spatial evolution of its dynamics can be explored
through cross-scale coupling.

2. Coupled model feedback

We define a component model as a relationship between a set of
state variables across time t, fxiðtÞg, and response variables also
across time t, fyjðtÞg. The model may also have memory, through
internal variables, fzkðtÞg. Furthermore, to support model coupling,
we assume that the model is computed sequentially through time
without access to future data. Finally, let the model have a set of
parameters, fqlg, used to calibrate it. Concretely, this means that

zkðtÞ ¼ gkðt; fxiðsÞ for s � tg; fzkðsÞ for s< tgÞ

yjðtÞ ¼ hjðt; fzkðsÞ for s � tg; fqlgÞ
Here, gkð,Þ and hjð,Þ determine the evolution of zk and yj,

respectively, through time. In this formulation, all input variables xi
are mediated through internal variables zk, perhaps through a 1-to-
1 mapping.

A model can then be represented as a tuple of relationships,

H ¼ �fgkðX; ZÞg;�hjðZ;QÞ��
Coupling consists of a collection of functions between the var-

iables in a set of models, fHmg. The coupling could occur between
the input and output variables, but it may also intervene in vari-
ables that are otherwise internal. Either of the following are
possible relationships between model m and model n:

xmiðtÞ ¼ amni

�n
ynjðtÞ

o
; fznkðtÞg

�
zmkðtÞ ¼ bmnk

�
fxmiðtÞg; fzmkðtÞg;

n
ynjðtÞ

o
; fznkðtÞg

�
amnið,Þ then describes how variables in model n determine the

ith input tomodelm, and bmnkð,Þ does the same for the kth internal
variable of model m.

Feedback in coupled systems produces two common distortive
effects: runaway feedback and miscalibration. Runaway feedback
manifests as exponentially amplifying trajectories or oscillations
which are produced by neither model in isolation but result from
the coupled system. Miscalibration occurs when coupling causes
the dynamics of a given yjðtÞ to change, when it should not be
affected by the feedback.

To understand these issues, consider a system composed of two
coupledmodels, H1 and H2. Let themodels be represented as linear,

time-invariant systems (LTI), characterized by transfer functions
h1ðtÞ and h2ðtÞ, respectively. These models take a single time series
of input and provide a time series of output. The analytical results in
this paper all apply LTI theory, although the final application of this
paper is formulated for any nonlinear system conforming to the
description above (Oppenheim et al., 2014).

A wide variety of models can be represented as LTI systems,
including dynamical models consisting of stocks and flows (e.g.,
Sterman, 2001). The output ymðtÞ that results from passing the
input xmðtÞ into a single system Hm is computed, ymðtÞ ¼ hmðtÞ�xðtÞ,
where � is the convolution operator. Although the structure
only allows a single input and output to each model, multiple in-
puts and outputs can be interleaved into a single time series, and
allowed to interact through a careful definition of the transfer
function.

In their uncoupled form, let modelHm take as its input xmðtÞ and
produce ymðtÞ. Furthermore, let y1ðtÞ and x2ðtÞ refer to the same
physical quantity, providing one path for coupling, and let y2ðtÞ
represent a computed anomaly on a physical quantity represented
by xðtÞ, and produce the model input x1(t) ¼ x(t) þ y2(t). For
example, xðtÞ might be an available food supply, H1 a species
ecosystem growth relationship, and y1ðtÞ the population of that
species. This population is an input into H2, which then computes a
loss of food supplies due to crowding, which compound the normal
food-based carrying capacity already reflected in H1. These defini-
tions are laid out below.

In Fig. 1, we couple these systems with a simple feedback loop.
xðtÞ is exogenous, but the feedback loop contributes to determining
the evolution of y1ðtÞ.

This relationship is described as

y1ðtÞ ¼ h1ðtÞ�ðxðtÞ þ y2ðtÞÞ

y2ðtÞ ¼ h2ðtÞ�y1ðtÞ
Under a Laplace transformation (L ðxðtÞÞ ¼ XðsÞ, L ðy1ðtÞÞ ¼ YðsÞ

and so on), this can be written

Y1ðsÞ ¼ H1ðsÞðXðsÞ þ Y2ðsÞÞ

Y2ðtÞ ¼ H2ðsÞY1ðsÞ

which simplifies to

Y1ðsÞ ¼
H1ðsÞ

1� H1ðsÞH2ðsÞ
XðsÞ ¼ H1ðsÞ

1� FðsÞXðsÞ

Here, FðsÞ ¼ H1ðsÞH2ðsÞ is the feedback term. If FðsÞ>1 for any s,
the system will resonate at this complex frequency and produce
runaway feedback.

For the miscalibration effect, we suppose that two models are
estimated separately before being coupled, producing H0

1ðsÞ from
the relationship between xðtÞ and y1ðtÞ and H0

2ðsÞ from y1ðtÞ and
y2ðtÞ, shown on the right of Fig. 1. That is,

Model Input (Example) Output (Example)

H1 xðtÞ þ y2ðtÞ (food availability) y1ðtÞ (species population)
H2 y1ðtÞ (species population) y2ðtÞ (crowding impacts)
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