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Highlights

• We estimate computational cost of isogeometric solver on distributed memory parallel machines.
• We show p2 scalability as we increase the global continuity, in 2D and 3D.
• We show O(N) and O(N 4/3) costs for 2D and 3D parallel direct solvers.
• We verify the costs experimentally on STAMPEDE Linux cluster from TACC.
• We test MUMPS, PaSTiX, and SuperLU, through PETIGA toolkit built on top of PETSc.

Abstract

This paper derives theoretical estimates of the computational cost for isogeometric multi-frontal direct solver executed on
parallel distributed memory machines. We show theoretically that for the C p−1 global continuity of the isogeometric solution,
both the computational cost and the communication cost of a direct solver are of order O(log(N )p2) for the one dimensional (1D)
case, O(N p2) for the two dimensional (2D) case, and O(N 4/3 p2) for the three dimensional (3D) case, where N is the number of
degrees of freedom and p is the polynomial order of the B-spline basis functions. The theoretical estimates are verified by numerical
experiments performed with three parallel multi-frontal direct solvers: MUMPS, PaStiX and SuperLU, available through PETIGA
toolkit built on top of PETSc. Numerical results confirm these theoretical estimates both in terms of p and N . For a given problem
size, the strong efficiency rapidly decreases as the number of processors increases, becoming about 20% for 256 processors for a
3D example with 1283 unknowns and linear B-splines with C0 global continuity, and 15% for a 3D example with 643 unknowns
and quartic B-splines with C3 global continuity. At the same time, one cannot arbitrarily increase the problem size, since the
memory required by higher order continuity spaces is large, quickly consuming all the available memory resources even in the
parallel distributed memory version. Numerical results also suggest that the use of distributed parallel machines is highly beneficial
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when solving higher order continuity spaces, although the number of processors that one can efficiently employ is somehow
limited.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we focus on the distributed memory parallel solution of linear systems arising from the use of
Isogeometric Analysis (IGA) [1] using direct solvers. IGA makes use of basis functions with high regularity (Ck with
k ≥ 0).

There exist two classes of methods for solving a linear system of equations: (a) direct methods, which deliver the
exact solution in one step (up to round off error), and (b) iterative methods, which provide an approximate solution of
prescribed quality by following an iterative process.

While the use of iterative solvers typically requires less computational resources (time and memory) than direct
solvers, they suffer from a number of problems. First, iterative solvers often present severe convergence problems.
Thus, different solvers are needed for each application (elasticity [2], electromagnetism [3], fluid dynamics [4]) and
numerical methods. For IGA, various iterative solvers have been proposed in [5–9]. Second, in addition to the con-
vergence problems, iterative solvers may be slower than direct solvers when a problem with multiple right-hand-side
needs to be solved, as it occurs in the case of gradient-based inverse methods in order to compute the Jacobian and
Hessian matrices. Iterative solvers may also be slower than direct solvers when several matrices with a common set
of rows and columns need to be solved, as it occurs in mesh-based methods when local grid-refinements are per-
formed [10–12]. Moreover, direct solvers are main building blocks of most iterative solvers. Thus, direct solvers
become essential in many applications.

There exist several direct methods for the solution of a linear system of equations, including LU factorization, QR
factorization, and singular value decomposition [13]. The fastest method is LU factorization, also known as Gaussian
elimination, which is by far the most used algorithm for the direct solution of a system of linear equations. While
other methods such as QR factorization may offer added stability minimizing the effect of round-off error, they are
simply non-competitive in terms of computational efficiency. The main principle of the LU factorization algorithm is
to decompose the original matrix A into the product of a lower triangular matrix L with an upper triangular matrix U .

For the case of sparse matrices, it is important to avoid operations with the zeros of the matrix, and to produce L
and U factors that are as sparse as possible. State-of-the-art implementations of the LU factorization algorithm for
sparse matrices include the frontal [14,15] and multi-frontal solvers [16,17]. The latest trends on this area include
efficient parallelization techniques (see e.g., [18,19]) and application-specific implementations that take advantage of
the data-structures of the Galerkin method, such as the works of [20–24].

This paper derives theoretical estimates of the computational cost for isogeometric (IGA) multi-frontal direct solver
executed on distributed memory parallel machines, for 1D, 2D and 3D problems. We show that for the C p−1 global
continuity of the solution, the computational cost of the parallel solver executed on a distributed memory cluster is
of order O(log(N )p2) for the 1D case, O(N p2) for the 2D case, and O(N 3/4 p2) for the 3D case. These theoreti-
cal estimates are compared with the ones obtained for the sequential multi-frontal direct solver described in [25] as
well as for the shared memory parallel solver for GPU described in [21]. Namely, the sequential estimates show that
the computational cost of C p−1 global continuity of the isogeometric solution is of order O(N p3) for the 1D case,
O(N 1.5 p3) for the 2D case, and O(N 2 p3) for the 3D case. In particular, the computational cost of sequential IGA
direct solvers grows as p3 when we increase the global continuity. In [21], we already showed that we can reduce this
p3 factor down to p2 when using a parallel shared memory machine. Our parallel distributed memory direct solver
delivers the same computational complexity as the shared memory parallel solver [21], for a sufficiently large number
of cores. Its communication complexity is of the same order as the computational complexity.

We confirm our theoretical estimates with numerical experiments, quantifying the weak and strong scalability of
the direct solver for IGA. The theoretical estimates concerning the computational costs are compared with numerical
experiments performed on the STAMPEDE Linux cluster from the Texas Advanced Computing Center [26]. The
experiments are performed with the PETIGA toolkit [27] built on the PETSc library [28–30], and utilize the parallel
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