
Modular and spatially explicit: A novel approach to system dynamics

Patrick Wingo a, *, Allen Brookes a, John Bolte b

a US Environmental Protection Agency, Western Ecology Division, Corvallis, OR, USA
b Oregon State University, Corvallis OR, USA

a r t i c l e i n f o

Article history:
Received 14 November 2016
Received in revised form
10 March 2017
Accepted 11 March 2017

Keywords:
System dynamics
Spatially-explicit
Simulation engine
Open-source
Simile
Vensim
XMILE

a b s t r a c t

The Open Modeling Environment (OME) is an open-source System Dynamics (SD) simulation engine
which has been created as a joint project between Oregon State University and the US Environmental
Protection Agency. It is designed around a modular implementation, and provides a standardized
interface for interacting with spatially explicit data while still supporting the standard SD model com-
ponents. OME can be run as a standalone simulation or as a plugin to a larger simulation framework, and
is capable of importing Models from several SD model formats, including Simile model files, Vensim
model files, and the XMILE interchange format. While it has been released, OME is still under devel-
opment, and a number of potential future improvements are discussed. To help illustrate the utility of
OME, an example model design process is provided as an Appendix.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction: what is OME?

The Open Modeling Environment (OME) is a System Dynamics
(SD) model simulation engine that has been developed as a joint
project between the department of Biological and Ecological En-
gineering (BEE) at Oregon State University and the Office of
Research and Development of the United States Environmental
Protection Agency (USEPA). At its core, OME is an engine for solving
SD models using either Euler or 4th-order Runge-Kutta (RK4)
integration methods. SD modeling involves characterizing, through
the use of ordinary differential equations, the response of a set of
system states through time (Lane, 2000). These states can be
thought of as discrete buckets holding a specific quantity of
something that is pertinent to the question the model is trying to
answer, and that describe the state of the system at a given
moment. Several common SD modeling tools are Simile
(Simulistics Ltd, 2015), Vensim (Ventana Systems, Inc, 2015), and
STELLA (isee Systems, 2013). All of these tools allow for the con-
struction of a Stock-Flow diagram, a method of visual model con-
struction that uses a set of standard symbols to describe the
processes that drive the simulation (Wingo, 2015). OME does not

yet have its own tools for constructing Stock-Flow diagrams, but
instead relies on existing tools to create models to be run (Wingo,
2015). A significant goal of OME's development has been to
address two shortcomings that are apparent in SD modeling tools
commonly used for authoring and running SD models: 1) the
absence of an elegant means of representing spatially explicit
models and associated datasets, and 2) the insular nature of many
extant tools, which creates unnecessary challenges when
attempting to couple them with other modeling software (Wingo,
2015).

Many modelers have included explicit spatial relationships in
the Stock-Flow diagrams used to define their SD models (Costanza
and Voinov, 2004). Traditional approaches to incorporating
spatially-explicit data into SD models are tedious and taxing, often
requiring the model authors to re-implement well-established
spatial relationships specific for each model implementation
(Voinov et al., 2004). Typically, such approaches are haphazard
solutions that take advantage of a particular modeling environ-
ment's implementation of multi-value variables, which are
commonly known as lists, subscripts, collections, or submodels
(Simulistics Ltd, 2008) (Ventana Systems, Inc) (isee Systems, 2520).
None of these approaches to multi-value variables are part of the
traditional SD model approach, and are not implemented equally
across SD modeling tools (Wingo, 2015). Ideally, incorporating
spatial data and relationships into SD models would be* Corresponding author.

E-mail address: pwingo@gmail.com (P. Wingo).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

http://dx.doi.org/10.1016/j.envsoft.2017.03.012
1364-8152/© 2017 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 94 (2017) 48e62

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:pwingo@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2017.03.012&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2017.03.012
http://dx.doi.org/10.1016/j.envsoft.2017.03.012
http://dx.doi.org/10.1016/j.envsoft.2017.03.012


accomplished using a standardized interface that managed details
associated with reading, writing, accessing, and querying spatial
information. Such an approach would allow for the use of spatially
detailed inputs and outputs without requiring the SD model to be
concerned about the specific representation of space used. OME
provides such a service through the Spatial Data Provider (Wingo,
2015), discussed in a later section of this paper.

There have been previous attempts to create ways to manage
spatially explicit datawithin the confines of a SDmodel. The Spatial
Modeling Environment (SME) (Costanza and Voinov, 2004) is a tool
that would take a model created in the SD modeling tool STELLA,
and apply the model once to each cell in a spatially explicit grid
(Costanza and Voinov, 2004). Similarly, SimARC (Mazzoleni et al.,
2003) represents another attempt to capture spatially explicit
data by bridging the simulation engine of the SD modeling tool
Simile (Simulistics Ltd, 2015) with the general Geographic Infor-
mation Systems (GIS) tool ArcMap (Environmental Systems
Research Institute, Inc, 2016), allowing the SD model to be
applied to each polygon in an ArcMap map layer (Mazzoleni et al.,
2003). While both SME and SimARC focus on applying a SD model
as a process internal to each discrete spatial unit (be it a grid cell or
polygon), OME applies aspects of a specific spatial coverage to the
dynamics captured within a single SD model (Wingo, 2015). This
approach effectively addresses a different explicit spatial usage case
than is covered by SME and SimARC, targeting a different set of
models and research questions (Wingo, 2015).

The second shortcoming being addressed originates from the
fact that most extant SDmodeling tools are largely insular in design
(Wingo, 2015). Cross-interaction and integration with other
modeling frameworks is challenging, as there is no standard
approach to tool integration, even when various SD modeling tools
are largely accomplishing their simulations in similar ways (Lane,
2008). While the XMILE standard is attempting to establish a
common interchange format for model definitions (OASIS XML,
2015), OME takes cross-interaction one step further by providing
an architecture and application programming interface (API) for
interacting in real time with other processes, allowing for it to be
embedded as a component in other software tools (Wingo, 2015).
Additionally, OME's source code is freely available, allowing OME to
be extended or modified if the original implementation is insuffi-
cient for a given purpose or integration scenario (Wingo, 2015).

1.1. Example model information

In order to demonstrate a number of the features supported by
OME, a demonstration model has been created: The Simple Critter
Model. A complete description of the model and a walkthrough of
how spatially explicit information is incorporated into this model
can be found in Appendix B; an abbreviated introduction to the
model follows. This model captures the dynamics of a population
moving between square sample plates in response to a stimulus.
These plates can be assembled in any configuration, but can only act
as traversable neighbors across one of the four edges (top, left,
bottom, and right). While the configuration of the plates can be
hard-coded into a model (see Appendix B), this approach is
inflexible and difficult to maintain; the addition, removal, or rear-
rangement of sample plates would require significant restructuring
of the stock flow diagram. Ideally, the dynamics represented by the
model could be applied without any knowledge of the explicit
spatial configuration, while still being influenced by it.

OME currently provides no visual interface for defining SD
models; rather, models are defined in XML-conformant text files
which are then read by the OME runtime. To simplify model crea-
tion, the Simple Critter Model was created in Simile, and then
converted to OME-conformant XML. The base Simile model used in

the conversion process is included in Appendix B. The conversion
process involves providing a model file from Simile, Vensim
(Ventana Systems, Inc, 2015), or any tool that supports XMILE to the
OME translation tool UniversalConverter, an executable that is part
of the OME package. Formore information on themodel conversion
process, see the “Support for Multiple File Formats” subsection in
the “Modular Design” section.

2. Modular design

In order to appeal to the broadest audience possible, OME needs
to provide support for a number of usage cases. Experience
throughout the course of OME's development has revealed a
number of potential usage cases, such as 1) generating and
exporting simulation results for later use by an external program, 2)
generating results for immediate perusal by a human being, and 3)
sharing intermediate results incrementally during a simulation run
as a piece of a larger simulation. The architecture of OME is
conducive to all of these potential usage cases.

OME is fundamentally a series of interconnected dynamically-
linked libraries and executables, with different configurations
used to accomplish different tasks (Wingo, 2015). The inter-
connected nature of the modules is outlined in Fig. 1, and a brief
description is provided for each distinct module. This approach to
the framework's architecture is useful for ensuring the efficient
use of resources by only using parts necessary for the task at hand.
This is exemplified by the OMEEngine, OMESimRunner, and
<plugin> modules in Fig. 1. OMEEngine is a simple command-line
tool for running a simulation and exporting the results, satisfying
the first identified usage case. OMESimRunner, by contrast, is
intended to not only run a simulation, but also provide an inter-
face for a user to organize and browse simulation results, satis-
fying the second identified usage case. Both OMEEngine and
OMESimRunner provide the ability to export all values from all
incremental timesteps in a comma separated values (.csv) file,
allowing for further processing of model generated values using
external tools. The <plugin> entry represents OME configured as a
plugin to a larger simulation (discussed later in this paper), which
would satisfy the third identified usage case. OMEEngine and the
<plugin> stand-in for external tools do not require any descriptive
details about model components, so they do not link against the
OMEDraw utility library. OMESimRunner, by contrast, does require
access to tasks unrelated to running the simulation, as it graphi-
cally displays the results of a simulation through a series of text-
based tables, so it links against OMEDraw. This modular con-
struction also provides flexibility for future implementations; if a
new usage case were to arise, such as the need to visualize OME
models, most of the necessary parts already exist in the OMER-
untime and OMEDraw libraries. The user-facing front end would
be the only piece that would need to be added to meet the task's
demands (Wingo, 2015).

The Simple Critter Model utilizes the OMEEngine executable,
the OMERuntime library, and the CSVSpatialDataProvider library
modules when executed; see Fig.1 for a description of eachmodule.
The details of how the model will be executed are largely depen-
dent on the contents of the control file, discussed in the next
section.

2.1. Specifying a model in OME

OME relies on an XML-based specification for model declara-
tions (.omem files) and control and simulation details (.omec files)
(Wingo, 2015). Parameter values can be provided through comma
separated values (.csv) files and/or Simile's .spf files (Wingo, 2015).
The .omem file provides an intermediate model declaration that

P. Wingo et al. / Environmental Modelling & Software 94 (2017) 48e62 49



Download English Version:

https://daneshyari.com/en/article/4978168

Download Persian Version:

https://daneshyari.com/article/4978168

Daneshyari.com

https://daneshyari.com/en/article/4978168
https://daneshyari.com/article/4978168
https://daneshyari.com

