Environmental Modelling & Software 94 (2017) 112—126

Contents lists available at ScienceDirect r e

Modelling & Software

—

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

Designing the Distributed Model Integration Framework — DMIF

@ CrossMark

Getachew F. Belete’, Alexey Voinov, Javier Morales

University of Twente, ITC, 7500 AE Enschede, The Netherlands

ARTICLE INFO ABSTRACT
Artic{e history: We describe and discuss the design and prototype of the Distributed Model Integration Framework
Received 22 November 2016 (DMIF) that links models deployed on different hardware and software platforms. We used distributed

Received in revised form
28 March 2017
Accepted 2 April 2017

computing and service-oriented development approaches to address the different aspects of interop-
erability. Reusable web service wrappers were developed for technical interoperability models created in
NetLogo and GAMS modeling languages. We investigated automated semantic mapping of text-based
input-output data and attribute names of components using word overlap semantic matching algo-
rithms and using an openly available lexical database. We also incorporated automated unit conversion
in semantic mediation by using openly available ontologies. DMIF helps to avoid significant amount of
reinvention by framework developers, and opens up the modeling process for many stakeholders who

Keywords:
Integrated modeling
Web services

Wrapping are not prepared to deal with the technical difficulties associated with installing, configuring, and
Service oriented architecture running various models. As a proof of concept, we implemented our design to integrate several climate-
Semantic mediation energy-economy models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Software/data availability Models are simplifications of reality and are developed with the

objective to understand a concept or system, to analyze what its
future states and trends may look like, and if possible to come up
with appropriate management decisions and mitigation or adap-
tation strategies. Thousands of computer models have been
developed. However, complex problems such as climate mitigation
require interdisciplinary knowledge and data from many domains
including climate, hydrology, energy, economy, land use, behavioral
sciences, etc. The complex and interrelated nature of such real-
world problems requires holistic system-of-systems thinking
(Laniak et al., 2013). In this case it is not practical, perhaps impos-
sible, to construct a single model that could simulate such complex
processes (Gijsbers and Gregersen, 2005). Integration of models
and tools may be a solution (Stoorvogel, 1995). It also reuses
existing models and it is faster and less expensive than reengin-
eering legacy systems (Madni and Sievers, 2014).

During integration, we should understand that component
models can be developed using different assumptions and se-
mantics, different methodologies, tools and techniques, may
operate at different temporal and spatial scales, may have different
levels of complexity, etc. Integration of models assumes linking
such heterogeneous models together into an operational model
chain (Knapen et al., 2013), or rather a network with loops and
feedbacks, where one model down the chain can also feed input
back into a model above. This requires addressing interoperability
at technical, semantic, and dataset levels (Belete et al., 2017). Based

DMIF

Software Developer Getachew F. Belete

Address University of Twente, ITC, 7500 AE Enschede,

Netherlands

Tel +31-684-838-692

E-mail getfeleke@gmail.com

First available 2015

Hardware requirements 1 GHz CPU 512 MB RAM

Software requirements Windows 7 Or Newer

Availability Open source

Cost Free

Program language C# and Java

Program size 250 MB

Software Access http://owsgip.itc.utwente.nl/projects/
complex/index.php/2-uncategorised/46-
model-integration-framework

* Corresponding author.
E-mail addresses: getfeleke@gmail.com (G.F. Belete), aavoinov@gmail.com
(A. Voinov), j.morales@utwente.nl (J. Morales).

http://dx.doi.org/10.1016/j.envsoft.2017.04.003
1364-8152/© 2017 Elsevier Ltd. All rights reserved.


Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:getfeleke@gmail.com
http://owsgip.itc.utwente.nl/projects/complex/index.php/2-uncategorised/46-model-integration-framework
http://owsgip.itc.utwente.nl/projects/complex/index.php/2-uncategorised/46-model-integration-framework
http://owsgip.itc.utwente.nl/projects/complex/index.php/2-uncategorised/46-model-integration-framework
mailto:getfeleke@gmail.com
mailto:aavoinov@gmail.com
mailto:j.morales@utwente.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2017.04.003&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2017.04.003
http://dx.doi.org/10.1016/j.envsoft.2017.04.003
http://dx.doi.org/10.1016/j.envsoft.2017.04.003

G.E Belete et al. / Environmental Modelling & Software 94 (2017) 112—126 113

on this we define a model integration framework as a set of soft-
ware libraries, classes, and components that enable one to manage
technical, semantic, and dataset aspects of interoperability.

Integration of models requires mediation that goes beyond
merging information and data that use different schemas.
Computer-based models contain sophisticated knowledge state-
ments, which may be represented in different ways. Due to this,
integration of models requires understanding of the different
contexts of the models involved. It also requires mechanisms to
modify the incoming information so that it fits to the assumptions,
conditions (rules), and processes in the data-receiving model. Best
practice indicates that this can be achieved by providing dedicated
components or modules that handle context-based interpretation
and semantic mediation. For example, such a mediator component
is known as the Knowledge Manager in SEAMLESS (Athanasiadis
and Janssen, 2008) or the Semantic Discovery Broker in eHabitat
web processing service (Dubois et al., 2013). One of the objectives of
modeling is to provide information to decision makers. Despite the
large number of available models, decision makers lack easy access
to models to evaluate alternative scenarios (Booth et al., 2011).
Models that do not require installation of special software, and that
do not need special training, are more accessible but rare. With the
advance of web technology, presenting models and integration
frameworks on the web, i.e. when a model can run in a normal web
browser requiring no additional software installation, is becoming
more popular since it can significantly increase model accessibility
and sharing. However, the volume of data involved, complexity of
the software platform required, computational demand for model
execution are identified as barriers that prevent sharing and re-
using models over the web (Brooking and Hunter, 2013).

Although availing models through web pages is useful, usage of
models will still be constrained by the way the web page presents
the model. For example, users may want to directly access model
output and display it as part of another application. This leads to the
idea of providing a “Model as a Service” (Geller and Turner, 2007;
Geller and Melton, 2008; Roman et al., 2009). Presenting models
as web services has the benefits of making models and their out-
puts more accessible, easier for model comparison, scalable, and
implementable using a variety of approaches (Nativi et al., 2013;
Peckham and Goodall, 2013). A web service developed using one
programming language can be accessed and consumed by appli-
cations using a number of other programming languages, i.e.
without requiring intermediary language interoperability tools. The
Interoperable nature of services gives the opportunity to integrate
legacy models by presenting them as web services (Goodall et al.,
2013; Granell et al., 2010).

Currently, one of the main challenges facing the integrated
environmental modeling community is lack of interoperability
across independently built systems (Goodall et al.,, 2011; Laniak
et al., 2013). This means that besides improving accessibility of
models and data, we also need a mechanism for integration across
disciplines and models developed using different platforms. There
is an increasing need for methodology that enables to build a
system-of-systems (Butterfield et al., 2008) by connecting inde-
pendent component systems and making them interoperable.

The context in which a certain model is used can vary signifi-
cantly. Besides, a model can be linked to a number of models in
different ways. Users have their own integration requirements.
Integration scenarios identified and designed by a certain group of
modelers or developers may not satisfy integration requirements of
the whole user community. Even one particular user can come up
with a number of integration requirements. On the other hand, only
a small subset of end users may have the programming skills
needed to modify the source code of integration frameworks in
accordance to their requirements. Due to this, there is a need for

tools in which users can select certain models and link them
without the need for additional design, coding, debugging, etc.

In this paper, we present the design methodology of a Distrib-
uted Model Integration Framework (DMIF). We present the
approach used to convert heterogeneous and independently built
models into plug-and-play components, and the mechanisms used
to automate some of semantic mediation tasks. In addition, we
present a case study in semantic mediation using semantic
matching algorithms and lexical databases. We also introduce in-
terfaces that enable runtime access and integration of web service
based models without the need of additional coding. We also
discuss the limitations of such approach. After all, models are al-
ways built for a purpose and there is no guarantee that when we
reuse a model we will be using it in the same way as intended by
the original model construction. This is how so called ‘inte-
gronsters’ (Voinov and Shugart, 2013) are created, which we
certainly want to avoid. User mediation and pre-integration
assessment are the only ways that we can safeguard ourselves
from unintended misuse of models. We explore how integration
interfaces and semantic mediation can assist in such user guided
model evaluation.

The remainder of the paper is organized as follows: Section 2
presents the design criteria of model integration frameworks.
Section 3 describes the architecture of DMIF. Section 4 provides
information on how we provided for technical interoperability by
presenting models as web services. Section 5 describes the meth-
odology for building the semantic mediation module of model
integration frameworks. This section also presents algorithms for
semantic matching of text-based input-output data and for
searching of components using attribute names of components.
Section 6 introduces runtime access and integration of web service
based models at the GUI level. Section 7 discusses additional issues
that we should consider in developing integration frameworks, and
we give our conclusions in Section 8.

2. Design criteria for DMIF

Our aim is to provide a verifiable design of a model integration
framework that helps to link multidisciplinary heterogeneous
models distributed over various software and hardware platforms
in a meaningful way. Design should follow user requirements, and
it should be verifiable against those user requirements. There are
many factors that a model integration framework should consider
(Belete and Voinov, 2014, 2016; Belete et al., 2014, 2017). There is no
ideal integration technique, which best suites all kinds of model
integration requirements. However, as a guideline we know that an
integration framework should consider the following design
criteria. It should:

e support models developed using different programming
languages,

e include models hosted on different hardware and software
platforms,

e access models located anywhere on the Internet,

e keep independently developed models autonomous,

e avoid reinventing whenever reuse of resources is possible,

e provide functionalities as reusable components,

o be extensible without disturbing the existing system,

e be accessible on the web.

Given these criteria, our design focuses on interoperability of
heterogeneous models. To realize this we need to establish a few
well-known dependencies (Rosen et al., 2008) among such models
that enable them to exchange data and to collaborate.



Download English Version:

https://daneshyari.com/en/article/4978173

Download Persian Version:

https://daneshyari.com/article/4978173

Daneshyari.com


https://daneshyari.com/en/article/4978173
https://daneshyari.com/article/4978173
https://daneshyari.com

