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A data deficit in shallow groundwater monitoring in Africa exists despite one million handpumps being
used by 200 million people every day. Recent advances with “smart handpumps” have provided accel-
erometry data sent automatically by SMS from transmitters inserted in handles to estimate hourly water
usage. Exploiting the high-frequency “noise” in handpump accelerometry data, we model high-rate wave
forms using robust machine learning techniques sensitive to the subtle interaction between pumping
action and groundwater depth. We compare three methods for representing accelerometry data
(wavelets, splines, Gaussian processes) with two systems for estimating groundwater depth (support
vector regression, Gaussian process regression), and apply three systems to evaluate the results (held-out
periods, held-out recordings, balanced datasets). Results indicate that the method using splines and
support vector regression provides the lowest overall errors. We discuss further testing and the potential
of using Africa's accidental infrastructure to harmonise groundwater monitoring systems with rural

water-security goals.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Timely and cost-effective groundwater monitoring is a global
challenge in both industrialised and developing countries (Gorelick
and Zheng, 2015; Giordano, 2009; Shah, 2010; Llamas and
Martinez-Santos, 2005; Nelson, 2012; Foster and Garduno, 2013).
Increasing urgency for policy action is driven by global ground-
water depletion rates doubling between 1960-2000 and
2000—2009 from 56 km? per year to 113 km?> per year (Doell et al.,
2014). However, global groundwater data vary in extent and quality
(Giordano, 2009; Wada et al., 2010; Mulligan et al., 2014). Africa is
the most data-poor region with limited records (<0.001%) of global
shallow groundwater records (Fan et al., 2013). Though high-
yielding groundwater sites (>5 1 s!) are limited and unevenly-
distributed, groundwater is a strategic resource for Africa's
growth and development, with groundwater storage estimated to
be over 100 times greater than annual renewable freshwater
sources (MacDonald et al., 2012). Africa’s systematic data deficit in
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shallow groundwater monitoring is juxtaposed by rapid and often
competing demands from domestic, industrial, and agricultural
sectors with regulatory and enforcement systems either weak or
absent. An unpredictable future climate will place new pressures on
managing and allocating groundwater, thereby increasing the need
for high-quality, low-cost shallow groundwater data in a distrib-
uted monitoring system.

Africa's shallow groundwater systems (<80 m depth) supply
domestic water for around 200 million rural Africans lifted by one
million handpumps distributed across rural areas (Foster and
Garduno, 2013). Handpumps emerged as a low-cost, durable
technology in the 1980s to supply drinking water to rural com-
munities (Hope, 2015). Shallow groundwater accessed by hand-
pumps operating throughout the year provides generally good
quality water to buffer dry periods. With ongoing challenges of
repairing broken handpumps in remote rural areas, a transmitter
was designed, tested, and successfully deployed in handpump
handles to automatically send data on pump usage via the GSM
network. Volumetric abstraction is calculated from accelerometry
data generated by the movement of the pump handle (Thomson
et al., 2012). Since 2012, these data have provided information on
hourly pump use, and have allowed local mechanics to be alerted
when failure events occur, thus reducing the down-time following
such events from over a month to several days (University of
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Oxford/RFL, 2015). Methods using pressure sensors and water
detection have also been developed to monitor pump usage
remotely, similarly aimed at reducing pump downtimes (Nagel
et al., 2015).

Further analysis of the accelerometry data revealed that elements
of the high-frequency components appeared to correspond to
groundwater depth. This study provides proof-of-concept analysis of
novel methods based on machine learning to predict aquifer depth
from the high-frequency signal. The implications of the findings
present a potentially scalable approach to address Africa's ground-
water monitoring deficit by harnessing handpumps as accidental
infrastructure (Frischmann, 2012) to improve groundwater resource
management; regulate and monitor irrigation, mining, or other
commercial groundwater users; and provide early-warning systems
for vulnerable populations dependent on shallow groundwater
resources.

In this article, we model the high-rate waveforms from the
accelerometry data using robust machine learning techniques that
are sensitive to the subtle interaction between the dynamics of the
handpump and the depth of the aquifer beneath the pump. We
compare the ability of various candidate machine-learning models
for the purposes of estimating aquifer depth.

2. Materials and methods
2.1. Study site and data description

The work described considers two datasets of accelerometery
recordings, collected from two different models of handpumps: the
Afridev and the India MK II. The first set of recordings, referred to as
the “Oxford” dataset, was collected from an India MK Il handpump
installed at the University of Oxford, UK, between April and
November, 2014. The second set of recordings, referred to as the
“Kenya” dataset was collected from 11 Afridev handpumps installed
in Kwale County, located between Mombasa and Tanzania's
northern border, over a two-week period in April, 2014.

Each dataset consists of recordings taken at the pump location.
To obtain recordings during our experiments, a consumer-grade
accelerometer was mounted to the handle of each pump, and
connected to a nearby laptop via a Bluetooth data connection. Each
recording comprises a single person pumping for 20 s—120 s. The
resulting accelerometry measurements in three orthogonal
("triaxial”) dimensions are recorded at 96 Hz. The signal recorded
by the accelerometer is proportional to the force applied to the
handle during the pumping motion. As the angle of the handle
changes, the axis along which the acceleration is sensed changes.
The lateral movement of the handle results in the presence of
additional acceleration components; however, the accelerometer is
mounted close to the fulcrum of the motion, and the angular ve-
locity of the handle is low, and so these additional components are
small compared to the effect of the applied force (Thomson et al.,
2012).

Depth measurement at the Oxford site was performed using a
manual “dipper”, which is lowered into the borehole and which
sounds on contact with water. Measurements were made before
each recording to the nearest 1 cm, a level of precision deemed to
be appropriate with respect to the measurement error (as shown
later). The depths for the Kenya dataset are estimates based on the
known depth of the pump's rods. The volume of water abstracted in
Oxford was very low, being tens of litres using a pump that is
capable of pumping over a thousand litres per hour. Combined with
the properties of the shallow aquifer in Oxford, this level of
pumping would have no impact on water level, meaning that
aquifer level could be viewed as being constant over the period of
each recording. This is addressed further in section 5.

Of the three measurement dimensions recorded by the device,
we use the dimension perpendicular to the pump handle,
associated with the waveform of the largest amplitude for our
analysis. Intervals of 5 s of accelerometry data collected using this
method are shown in Fig. 1.

These time-series accelerometry signals show the fundamental
pumping motion, similar to the motion of the handle. The
increasing parts of each waveform in Fig. 1 correspond to the
handle being pushed downwards to lift water and the decreasing
parts to the handle lifting to reset the pump. We refer to each of
these cycles as being a period.

The example waveforms in the figure also show the noise
present in the data, which is mostly caused by the mechanical
vibration in the pump due to the motion of the handle. The figure
shows that this noise is of larger amplitude on the increasing part
each period than on the decreasing part; this effect is anticipated,
because the increasing parts of each period correspond to me-
chanical loading of the handpump, while the weight of the water is
being lifted, as described above. The examples in the figure have
different levels of noise; it may be seen that the India MK Il pump at
Oxford (shown in the lowermost plot in the figure) has the noise
with the highest amplitude - the handle rubs against the body of
the pump which causes substantial vibration levels when water is
being lifted. Infrequent use of this pump (because it is a prototype
in the university setting) means that the pump has not yet reached
a dynamic equilibrium by being “worn in”.

We separate the time-series accelerometry data at the troughs
(after smoothing using a low-pass filter) to divide the recordings
into individual periods. Thus, each recording for each pump yields a
series of periods of accelerometry data. The latter are generally
between 0.8 s and 1.2 s in length, and hence contain approximately
80 and 120 data points (sampled at 96 Hz).

2.2. Representing each period of accelerometry data

The next step of our analysis aims to reduce the high-rate
(96 Hz) time-series accelerometry data contained within each
period into quantities that capture their dynamical characteristics
in a parsimonious manner, suitable for modelling. We consider two
main characteristics for each period: the shape (representing the
pumping movement) and the high-frequency vibrations in the
handle during the movement.

We chose to investigate three methods for representing each
period. For each method, we summarise each period of waveform
data from each recording using (i) a feature vector representing the
shape of that period and (ii) a feature vector representing the
vibration levels observed during that period. These feature vectors
are sets of scalar variables (defined below), and labelled s and v, for
shape and vibration, respectively.

2.2.1. Representation method I: wavelets

The wavelet transform (Torrence and Compo, 1998) provides
information about the magnitude of different frequency compo-
nents present in a time-series, and how these change over time.
The wavelet transform should reveal both the underlying shape of
the waveform corresponding to the gross pumping motion (which
corresponds to relatively low frequencies in the signal), in addition
to components describing the vibration (which correspond to
relatively high frequencies in the signal).

Fig. 2 shows the wavelet transform applied to an example
waveform of accelerometry data. Fig. 2a shows the original 96 Hz
waveform Fig. 2b shows its wavelet transform. The figure shows a
time vs. frequency plot for this wavelet transform, which is a
heatmap corresponding to the strength of frequency content of the
signal, through all points in time. (Higher frequencies correspond to
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