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a b s t r a c t

Environmental data simulation is carried out for various purposes and is most simply achieved when
recorded data can be regarded as a sequence of independent random variables. Simulating from such
data involves generating random variables from some fitted probability distribution, preserving the main
statistical characteristics. The particular case of data simulation with moment matching is revisited, with
a proposal that data be simulated from many-component finite mixture distributions. The simulation
procedure matches data moments while also giving greater flexibility for data approximation. In
contrast, a single parametric distribution fitted to irregular data will result in data simulations more
representative of the fitted distribution than the original data. The flexible finite mixture approach
therefore has potential to replace parametric univariate data simulation generally. The method is illus-
trated with simulations from finite mixtures of generalised beta distributions with matching of data
mean, variance, skewness and kurtosis.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental data simulation has many practical applications
and a range of simulation methodologies have been proposed
which encapsulate the often complex temporal structure of many
environmental time series. Recent publications includeWasko et al.
(2015), Koutsoyiannis (2016), Tsekouras and Koutsoyiannis (2014),
Efstratiadis et al. (2014), and Srivastav and Simonovic (2014).

Despite the ubiquitous nature of persistence and other effects,
some environmental time series and other recorded data sets may
be regarded to a first approximation as a sequence of independent
random variables from an unknown univariate distribution. Data
simulation then reduces to the classic model of generating random
variables from some specified probability distribution with similar
statistical properties to the recorded data (Kuhl et al., 2010). This
method is revisited here for the specific situationwhere it is desired
that simulations match themoments of the original data, which is a
helpful way of quantifying statistical connection between recorded
and simulated data. That is, the probability distribution generating
the simulations must have the same first moments as the recorded
data.

The simplest approach to moment matching is bootstrap
assignment of selection probability 1/N to each member of a given

set of N recorded data values. Simulations from such bootstrap
distributions preserve data moment properties but have the
disadvantage that only previously recorded values can be simu-
lated. Generating different-valued data while maintaining moment
matching can be achieved by simulating from a fitted standard
probability distribution which has the same first few moments as
the data. However, even the more flexible parametric distributions
are not able to approximate recorded data which has some degree
of irregularity. Simulated data in such cases are likely to be more
reflective of the fitted distribution than the original data, despite
matching of moments.

Non-parametric kernel-based distributions have flexibility to
approximate even the most irregular data but will not generally
match the moments or other specific statistical characteristics of
the recorded data. See, for example, Howe (2013) and cited refer-
ences. Taylor and Thompson (1986) describe a data-based simula-
tion approach which has some similarities to the method to be
presented here. However, their method is essentially a kernel
approach which does not seek to match moments.

This brief communication is concerned with presenting an
alternative method of moment-matching simulation from univar-
iate data. It has the particular advantage of improved flexibility to
simulate data characterised by some degree of irregularity.

The proposed simulation method is simple, comprising repeats
of the 3-step process: (i) sample m data values at random and
without replacement from some existing set of N recorded dataE-mail address: earl.bardsley@waikato.ac.nz.
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values, (ii) specify the parameter values of a parametric distribution
such that its first kmoments are the same as the first kmoments of
the m data values, (iii) generate a random variable from that
distribution.

The “without replacement” aspect here is only with respect to
selecting a given set of m data values. The m data values are
conceptually returned to the data and some may be reselected in a
later sample draw.

2. Simulating from finite mixture distributions

The simulation process as described equates to generating
random variables from a finite mixture distribution made up of
J ¼ C(N,m) component parametric distributions, each one of which
has the same first k moments as its corresponding set of m data
values. For example, N ¼ 100 and m ¼ 4 creates a finite mixture
distribution made up of C (100,4) ¼ 3,921,225 component para-
metric distributions because there are 3,921,225 possible subsets of
4 data values obtainable from 100 data values.

Any finite mixture distribution so defined will have the same
first k central moments as the data set ofN values, as is noted below.

The equality of central moments of the data and a finite mixture
distribution follows from the expression form0i , denoting the i th
moment about zero of an unweighted finite mixture distribution:

m0i ¼ J�1
XJ
j¼1

m0ij i � k (1)

where m0 ij is the i th moment about zero for the j th component
distribution of the finite mixture distribution.

Eq. (1) also provides the i th moment about zero of the N data
values, given that the i th moments about zero of the j th compo-
nent distribution are equal to the i th moments about zero of the j
th data subset. That is, there is equality of the moments about zero
for the finite mixture distribution and the data set.

If any distribution's first kmoments about zero are known, then
the first k central moments must also be known because central
moments can be expressed as functions of moments about zero.
Therefore, if any two distributions both have the same first k mo-
ments about zero then they must also have the same first k central
moments. It follows that a finite mixture distribution as previously
defined must have the same first k central moments as the N data
values. Given this linkage of moments, the first k central moments
of the simulated data will tend toward the first k central moments
of the N data values as the number of simulations increases.

Different choices of component distributions will give rise to
different finite mixture distributions. However, all possible finite
mixture distributions as defined here will always have the same
first k central moments as the N data values.

A specific requirement of the procedure is that each of the
C(N,m) component distributions must have parameters which give
the same first k distribution moments as apply for the respective
data samples of size m. It could happen that for some data samples
it will not be possible to assign the required parameter values. For
example, if all the m sample values happen to be the same. In such
situations the simulated variable is simply a bootstrap selection of
one of the m data values. That is, some of the component distri-
butions in the finite mixture may be discrete bootstrap distribu-
tions. However, this does not affect the equivalence of the central
moments of the finite mixture distribution and those of the N data
values.

The finite mixture distributions proposed here are simply a
means to a convenient algorithm for simulating data with moment
matching. There is no suggestion that a many-component finite

mixture density function might serve to estimate the density
function of the unknown distribution generating the recorded data.
Indeed, the mixture density functions in their fine detail will often
be characterised by numerous singularities and probability spikes,
as well as possibly including some discrete component distribu-
tions. However, this is not an issue for data simulation purposes,
which requires only that the distribution function of a finite
mixture distribution gives a good smoothed approximation of the
data empirical distribution function. This will also be evident as
strong similarity between histograms of data and simulated data.
Because C(N,m) increases rapidly with N, it would be expected that
distribution function approximations would hold even for rela-
tively small N.

For example, suppose there are 10 recorded data values andm is
set to 4. This yields C (10,4) ¼ 210 component distributions of the
finite mixture distribution. This is illustrated in Fig. 1 for a finite
mixture distribution function comprised of 210 four-parameter
beta component distributions, with parameter values determined
from all possible combinations of four values drawn from the ten
data values: �1, �0.5, 0, 1, 2, 8, 9, 10.5, 11, 12. There is no suggestion
of course that data sets of ten values should be used for practical
data simulation. Details of setting up beta component distributions
are given in Section 3.

Considering now the effect of the magnitude of m on the finite
mixture distributions, largerm values will not in general yield finite
mixture distributions which better approximate the original data.
This applies particularly if there is some degree of data irregularity.
The smallest possible m, corresponding to the number of distri-
bution parameters, results in a higher probability that all the m
values of a given sample will be located near a mode in the data
distribution. This creates a higher frequency of simulated values
near data modes. When m is large the sample values will be more
widely spread and give a greater probability of the associated
parametric distributions having a larger standard deviation and
therefore simulating data less reflective of data modes.

It is evident that m has similarities to the bandwidth parameter
in kernel-based distribution estimation, with larger values of m
resulting in less sensitivity to irregular data variation.

3. Simulating from generalised beta distribution mixtures

Kuhl et al. (2010) point to the utility of fitting a single general-
ised (4-parameter) beta distribution to data as a basis for data
simulation. A many-component finite mixture of generalised beta
distributions therefore has attraction for even more flexible
approximation to data while still matching the mean, variance,
skewness, and kurtosis of the data values.

With respect symbolism, the 4-parameter beta probability
density function is defined:

f ðx; a; b;p; qÞ ¼ cðx� aÞp�1ðb� xÞq�1 a< x< b; p; q>0 (2)

where p and q are shape parameters, a and b define the distribution
end points, and c is a positive term dependent on the parameter
values.

There is restriction on the choice of m values with beta finite
mixture distributions. This is because as m increases it is possible
that the m data values in a sample could have a configuration such
that the sample skewness or kurtosis is outside the beta distribu-
tion region on the Pearson beta plane. Generating a random vari-
able from a beta distribution would not then be possible. In such
situations a random variable would need to be simulated from
some other applicable parametric distribution, or a bootstrap
simulation from the m sample values would be utilised.

The beta plane region for m ¼ 4 falls entirely within the beta
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