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a b s t r a c t

To cope with computing power limitations, air quality models that are used in integrated assessment
applications are generally approximated by simpler expressions referred to as “source-receptor re-
lationships (SRR)”. In addition to speed, it is desirable for the SRR also to be spatially flexible (application
over a wide range of situations) and to require a “light setup” (based on a limited number of full Air
Quality Models - AQM simulations). But “speed”, “flexibility” and “light setup” do not naturally come
together and a good compromise must be ensured that preserves “accuracy”, i.e. a good comparability
between SRR results and AQM.

In this work we further develop a SRR methodology to better capture spatial flexibility. The updated
methodology is based on a cell-to-cell relationship, in which a bell-shape function links emissions to
concentrations. Maintaining a cell-to-cell relationship is shown to be the key element needed to ensure
spatial flexibility, while at the same time the proposed approach to link emissions and concentrations
guarantees a “light set-up” phase. Validation has been repeated on different areas and domain sizes
(countries, regions, province throughout Europe) for precursors reduced independently or contempo-
rarily. All runs showed a bias around 10% between the full AQM and the SRR.

This methodology allows assessing the impact on air quality of emission scenarios applied over any
given area in Europe (regions, set of regions, countries), provided that a limited number of AQM simu-
lations are performed for training.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Like in any other policy area, modeling tools are nowadays
commonly used in the field of air pollution, to support policy
makers in choosing the best options to improve air quality (Reis
et al., 2005; Terrenoire et al., 2015). Air quality models (AQM)
indeed represent the best (and only) instruments to screen and
assess the impact of future policy options. But because these
models include the current state of the art in terms of physical and
chemical representation of the complex processes taking place in
the atmosphere (captured through the numerical resolution of
complex nonlinear differential equations) they generally run slow
in terms of computer time and do not allow for the interactivity
required by policy makers when testing various options in relation

to possible air quality plans.
This problem is exacerbated when AQMs are used in the frame

of complex integrated assessment modeling (IAM) tools. IAMs have
been extensively used in different policy related scales/contexts, as
e.g. at the international level in support to preparation of the LRTAP
(United Nation Economic Commission for Europe “Air Convention”)
Gothenburg protocol (Amann et al., 2011), at European level in the
frame of the National Emission Ceilings and Air Quality Directive
(Kiesewetter et al., 2015), or at the national/local scales to elaborate
plans and programs to improve air quality (Carnevale et al., 2014).
But due to computing power limitations in IAM applications, AQM
are generally approximated by simpler expressions that guarantee
speed and interactivity. These expressions, often referred as
“source-receptor relationships (SRR)” approximate the behavior of
the complex air quality model with the objective of providing
simple relationships between emissions and concentrations (Oxley
et al., 2007; Pistocchi and Galmarini, 2010; Ratto et al., 2012). The
first step to derive SRR consists in running the full AQM with
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different input data (i.e. emissions) that cover the desired range of
future application. This step is referred to as training. In contrast,
the validation phase consists in running a few AQM simulations to
test the capacity of the SRR to mimic the AQM in different appli-
cations. For a meaningful evaluation, these simulations should be
independent from the training simulations.

In addition to speed, it is desirable that the SRR also fulfill other
characteristics, namely “spatial flexibility” and “light set-up”. By
“spatial flexibility” we intend here the possibility of applying the
SRR over a wide range of possible situations, in terms of the spatial
design of the scenarios (i.e. having freedom in defining the areas
where emission reductions will be applied). By “light set-up” we
mean both that the number of full AQM simulations requested for
the training of the SRR should be limited, and that the level of
knowledge required for the analyst to train the SRR should be
limited (i.e., using simple regression techniques, etc …). Given the
complexity of the AQM and the time required to perform simula-
tions, it is important to keep the number of simulations in the
training set under control, without compromising accuracy. Speed,
flexibility and light setup do not naturally come together and a gain
in spatial flexibility will most of the time be obtained at the expense
of a heavier set-up or of a loss in terms of speed. The challenge
therefore consists in ensuring a good compromise among these
three characteristics, while preserving accuracy, i.e. a good
comparability between SRR results and AQM.

According to their purpose, currently used SRR methodologies
generally privilege one or two of the above mentioned character-
istics in detriment of the others. The GAINS (“Greenhouse Gas - Air
Pollution Interactions and Synergies”, Amann et al., 2011,
Kiesewetter et al., 2015) integrated assessment tool relies on the
EMEP (“European Monitoring and Evaluation Programme”) air
quality model to build its SRR (Tarras�on et al., 2004). In this
approach, emissions are aggregated in terms of countries, resulting
in “country-to-grid” SRR. Being proportional to the number of
countries and emission precursors considered, the number of
simulations requested for the training is substantial. Given the way
they are constructed, the country-to-grid EMEP SRR can only be
applied to assess the impact of scenarios in which emissions have
been changed over the countries considered during the training.
This results in a lack of spatial flexibility, i.e. the impossibility to use
SRR to evaluate subnational emission reduction scenarios. The
GAINS-EMEP SRR, however, run fast as the number of operations is
proportional to the number of countries and precursors involved.

In the AERIS (“Atmospheric Evaluation and Research Integrated
system for Spain”) model emissions are not aggregated spatially but
in specific sectors (Vedrenne et al., 2014). Full AQM simulations in
which these sectors are reduced individually are then used in the
training phase to construct the SRR. Because the number of
requested simulations is proportional to the number of sectors
considered, the setup can be quite light. Spatial flexibility is on the
contrary absent because all emission reductions considered in the
training are performed domain wide. Similarly to the EMEP SRR,
this approach also runs fast.

Another methodology has been implemented in the RIAT þ tool
(Carnevale et al., 2012). Emissions are here aggregated in four large
quadrants that are defined relatively to each grid cell of the domain
(sliding quadrants). The quadrant emission values and their related
grid cell concentrations are then used to feed a neural network that
delivers the SRR (Carnevale et al., 2009). Although the approach
requires a limited number of full AQM simulations (around 20), the
set-up of the SRR remains complex due to the need of imple-
menting neural networks. Neural networks also require that their
application is limited to the range of situations covered during the
training phase. From a speed point of view, the sliding quadrant-to-

cell approach performs very well.
Clappier et al. (2015) (referred as C2015 in the following) pro-

posed a new methodology (referred to as “Multi-ring”) to derive
SRR. Similarly to the quadrant-to-cell approach described above,
these SRR make use of sliding emission aggregations (rings) but
assume linearity in the emission-concentration relationships. The
main consequence of this linearization is the simplification of the
training phase.

In this work, we further elaborate on the approach of C2015 and
show how it can be further developed to improve spatial flexibility.
In Section 2, we briefly review the main elements of the C2015
work and discuss its limitations in terms of spatial flexibility. In
Section 3 an improved methodology is proposed while Section 4
evaluates the results of this approach for a series of case-studies.

2. The “multi-ring” approach and its limitations

In this section we briefly review the C2015 methodology main
features and limitations.

2.1. Methodology

As previously stated, the goal of the SRR is to mimic an AQM to
calculate as quickly as possible the effect of emission reductions on
concentration levels (Castelletti et al., 2012). In general, the SRR
model consists in an algebraic relationship between gridded
emissions and concentrations. Although concentrations and emis-
sions are defined on the same grid cells, wemake here a distinction
between sources (emissions) and receptors (concentrations) grids
for convenience.

A series of steps are detailed in C2015 in order to design the SRR,
which are briefly summarized as follows:

1) The calculation of SRR algebraic relationships between emis-
sions and concentrations expressed in absolute terms can lead
to errors if not accounted for correctly. This problem disappears
if emission and concentration are expressed in relative terms,
i.e. as difference (delta) between a base case and a reduction
scenario (Thunis et al., 2016).

2) For long term indicators (i.e. yearly average) which are the focus
of this work, the relationship between emission and concen-
tration deltas can be approximated accurately with a linear
function (Thunis et al., 2015). Consequently and since the con-
centration change in a receptor cell “j” can result from the
reduction of different emission precursors “p” coming from any
source cell “i” within the domain, the concentration delta in a
receptor cell “j” can therefore be computed as follows:

DCj ¼
XP
p

XN
i

apijDE
p
i (1)

where N is the number of source grid cells within the domain, P is
the number of precursors, DEpi andDCj are the emission and con-

centration deltas, apij are unknown parameters to be identified.

3) The number of unknown parameters (apij) which need to be
identified in the case of a cell per cell relationship is prohibitive
(equation (1)). Indeed for a N ¼ 50 � 50 grid cells domain and
P ¼ 5, the identification of about 12,500 parameters is required
to calculateDCj. 12,500 unknown parameters would need to be
identified by solving an equations system that contains at least
12,500 equations, each of these relying on DCj and DEpi provided
by an independent CTM scenario run, which is materially
unfeasible.
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