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a b s t r a c t

A novel framework, which incorporates implicit stochastic optimization (Monte Carlo method), cluster
analysis (machine learning algorithm), and Karhunen-Loeve expansion (dimension reduction technique)
is proposed. The framework aims to train a Genetic Algorithm-based optimization model with synthetic
and/or historical data) in an offline environment in order to develop a transformed model for the online
optimization (i.e., real-time optimization). The primary output from the offline training is a stochastic
representation of the decision variables that are constituted by a series of orthogonal functions with
undetermined random coefficients. This representation preserves covariance structure of the simulated
decisions from the offline training as gains some “knowledge” regarding the search space. Due to this
gained “knowledge”, better candidate solutions can be generated and hence, the optimal solutions can be
obtained faster. The feasibility of the approach is demonstrated with a case study for optimizing hourly
operation of a ten-reservoir system during a two-week period.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The optimization of hourlymulti-reservoir operation is essential
to many short-term routines such as determining the hourly
operation strategy of the reservoir in a power-scheduling problem
(Gil et al., 2003). Energy marketing also requires hourly reservoir
operation for incorporating energy price changing at every hour
(Olivares and Lund, 2011). Power schemes that combine hydro-
power with wind generation and/or other renewable sources often
consider hourly or sub-hourly time steps for accurate representa-
tions on the variation of power resources (Wang and Liu, 2011;
Deane et al., 2014). Moreover, hourly reservoir operations are
increasingly being considered for environmental objectives. For
instance, hourly fluctuations in water surface elevation and flow
discharge are essential for spawning activity of some fish species
(Chen et al., 2015; Stratford et al., 2016). Maintaining hourly regime

of environmental flows has gained increasing attention due to its
benefit to the biota of river ecosystem (Meile et al., 2011; Shiau and
Wu, 2013; Horne et al., 2017). Optimizing hourly multi-reservoir
operation, however, is a challenging task due to the complexity of
the search space, which result from the large number of decision
variables (e.g., thousands). The optimization problem may be
solved in an offline environment assuming all information are
known. This offline optimization is normally accompanied by high
computational cost and therefore, may not be acceptable for the
online optimization, i.e., an efficient optimization preformed in a
real-time manner.

Genetic Algorithms (GA) and its variants have been widely
applied to multi-reservoir operation during the last two decades
(Oliveira and Loucks, 1997; Wardlaw and Sharif, 1999; Reed et al.,
2013; Tsoukalas and Makropoulos, 2015; Lerma et al., 2015; Gibbs
et al., 2015) owing to its robustness, effectiveness and global opti-
mality properties. However, most applications of the GA on reser-
voir operation focus on long term planning and management with
monthly time step or short-term optimization with a daily time
step. Like other metaheuristics methods, GA works by iteratively* Corresponding author.
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moving to better positions in the search-space, which are sampled
using some probability distribution (e.g., normal) defined around
the current position. The embedded randomness is a key element
for global optimality, however, results in a slow convergence. For
the GA-based model, the computational cost for optimizing hourly
multi-reservoir operation may be too expensive to perform an
efficient online optimization in real-time. To reduce the computa-
tion cost, some decomposition techniques have been adopted. Gil
et al. (2003) perform a time hierarchical decomposition on a
short-term hydrothermal generation scheduling problem and a set
of expert operators (expert knowledge of the system and a priority
list) is incorporated in the GA. Zoumas et al. (2004) proposed six
problem-specific genetic operators, essentially a combination of
local search techniques and expertise on the problem, to enhance
the online performance of the GA for a hydrothermal coordination
problem. Although useful in certain contexts, these techniques tend
to be very problem-dependent and difficult to apply to general
problems.

Machine-learning approaches, such as Reinforcement Learning
(RL) and Cluster Analysis (CA) have been increasingly used to
improve the performance of the optimization model, despite that
many machine-learning approaches are optimization problems per
se. In fact, machine-learning approaches and optimization algo-
rithms have become frequently coupled for solving complex
problems (Bennett and Parrado-Hern�andez, 2006). Lee and Labadie
(2007) used the RL to improve the performances of a stochastic
optimization model for operating a two-reservoir system on Geum
River (South Korea). Castelletti et al. (2010) applied a tree-based
learning method for optimal operation of reservoirs in Lake Como
water system (Italy). Though different machine-learning ap-
proaches are implemented, the basic idea is to interact with the
experience (e.g., historical data) or environment (e.g., feedback)
and learn from these interactions. The pilot researches of Lee and
Labadie (2007) and Castelletti et al. (2010) showed promising re-
sults for using machine learning to improve the performance of the
optimization model. However, their researches focus on long term
planning using offline optimization. The computational cost of
optimizing one reservoir is approximately 1.5 h in a regular
computing environment (Castelletti et al., 2010), which is infeasible
to implement for hourly multi-reservoir operation in real time.

The performance of the online optimization can be improved
through the offline optimization (De Jong, 1975). The offline opti-
mization is normally used to determine the current state and the
control law for the online optimization and reduce the online
control algorithm to a lookup table (Bemporad et al., 2002;
Pannocchia et al., 2007). This strategy applied successfully to the
small problems for which the number of decision variables is
manageable, however, no longer practically feasible for large
problems with thousands of controls (Wang and Boyd, 2010).
Chasse and Sciarretta (2011) combined an offline optimizer with an
online strategy for energy management problem. The offline opti-
mization estimated two tuning parameter for the online optimi-
zation and therefore, allowing a better performance for the online
optimization. However, an adaptation rule, which can be problem-
specific, is needed for linking the offline optimization with the
online optimization in order to account for future information
uncertainty. Ravey et al. (2011) used offline optimization to predict
a control strategy and then adapt online control strategy for real
time energy management. An extra GA optimizer is implemented
for the online optimization to improve the performance. Among
those works, offline optimization is used to provide a priori for the
online optimization but some extra efforts are normally required in
the online optimization due to uncertainty/variability of the future
information. A novel framework based on offline training is pro-
posed herein to improve the performance of online optimization

for hourly multi-reservoir operation. The framework trained the
online optimization through intensive offline optimization, in
which many inflow scenarios that account for future information
are included. No extra procedure is required for the online opti-
mization after the offline training process is completed and
therefore, provide a more generic solution for different applica-
tions. The framework combine implicit stochastic optimization
(Monte Carlo method), cluster analysis (machine learning algo-
rithm), and Karhunen-Loeve expansion (dimension reduction
technique) in an offline environment and develop a transformed
model for the online optimization. The transformed model pre-
serves the covariance structure of the obtained ‘historical’ optimal
solutions, which can be thought as gaining knowledge from the
training process. Candidate solutions that are generated by the
transformed model (i.e., the trained model) share similar statistical
properties with the historical optimal solutions and therefore, the
trained model finds optimal solutions faster given similar input
data. The framework is applied to train a multi-objective optimi-
zation model for hourly operation of a ten-reservoir system. The
performance of the trained model is compared against the un-
trained model (zero training). The sensitivity on the number of the
training times is also investigated. The major contribution of the
study is (1) develop a novel framework for training optimization
model in an offline environment, (2) the trainedmodel significantly
improve the online performance of optimization and (3) discover
an optimal number of model training times for a relatively good
performance with relatively less training budget.

2. Optimization model for hourly reservoir operation

2.1. Reservoir system

A reservoir system on the Columbia River in the United States,
which comprises 10 reservoirs, is used as a test case. Sketch of the
ten-reservoir system is shown in Fig. 1. The reservoir system pro-
vides multiple operational purposes including power generation,
ecological and environmental requirements and recreation
(Schwanenberg et al., 2014; Chen et al., 2016).

We consider an operational horizon as two weeks, specifically
from August 25th to September 7th due to the data availability. The
time step of the decisions is hourly. The decision variables are the
outflows of each reservoir at each hour during the optimization
horizon, which resulting in 3360 variables in total.

2.2. Objectives

Two objectives related to power generation are explicitly
considered and expressed in the following:

Objetive1: Minimize
XTh
t¼1
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where PG is hydropower generated in the system (MWh), PD is
power demand in the region (MWh). The variable t denotes time in
hours and Th is the optimization period (3360 h). The index i
represent reservoirs in the system and Nr is total number of res-
ervoirs. hr means heavy load hours (HLH) for a day (typically from
06:00 to 22:00 h). The quantity Td corresponds to the optimization
period in days (14 days in our case).
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